A reading aid method was proposed. A hierarchical anchoring method was used to determine the target text, in order to construct the demand determination factors related to the user’s visual behavior and the features of the target text, and to calculate the user's demand degree for reading aid based on these factors, so as to determine whether the user had the demand for word translation or long sentence summary of the target text. When the demand of the user was determined, the word meaning or long difficult sentence summary was displayed in the form of annotation. The test results show that the average accuracy of this method reached 80.6% ± 6.3%, and the automatically generated annotation can improve the user’s reading efficiency and subjective experience. Thus, the feasibility and effectiveness of the proposed method are validated.
Shi-wei CHENG,Wei GUO. Reading annotation generation method through analysis of visual behavior and text features. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1115-1125.
Tab.3Description of adjustable parameter setting for requirement determination
Fig.9Example of prototype system interface and reading annotation
Fig.10Examples of user testing in different reading modes
混淆矩阵
0:统判定无需求
1:系统判定有需求
0:用户没有需求
TN
FN
1:用户有需求
FP
TP
Tab.4Definition of confusion matrix of demand determination
Fig.11F score of demand determination for word and long difficult sentence
阅读模式
样本类型
P/%
T/s
电子阅读
单词
86.3
1.3
句子
72.6
2.7
纸质阅读
单词
80.4
1.5
句子
63.9
2.9
Tab.5Average accuracy of demand determination and average time delay of annotation generation
[1]
RAYNER K Eye movements in reading and information processing: 20 years of research[J]. Psychological Bulletin, 1998, 124 (3): 372- 422
doi: 10.1037/0033-2909.124.3.372
[2]
范琳, 刘振前 阅读理解过程的眼动研究[J]. 外语与外语教学, 2007, (4): 38- 43 FAN Lin, LIU Zhen-qian A study on eye movement in reading comprehension[J]. Foreign Languages and Their Teaching, 2007, (4): 38- 43
[3]
RIGAS I, FRIEDMAN L, KOMOGORTSEV O. A study on the extraction and analysis of a large set of eye movement features during reading [J]. arXiv Preprint: 1703.09167, 2017.
[4]
NILSSON M, NIVRE J. Learning where to look: modeling eye movements in reading [C] // Thirteenth Conference on Computational Natural Language Learning (CoNLL), Boulder: Association for Computational Linguistics, 2009: 93-101.
[5]
HARA T, MOCHIHASHI D, KANO Y, et al. Predicting word fixations in text with a crf model for capturing general reading strategies among readers [C] // Proceedings of the First Workshop on Eye-Tracking and Natural Language Processing. Stroudsburg: ACL, 2012: 55-70.
[6]
KUNZE K, IWAMURA M, KISE K, et al Activity recognition for the mind: toward a cognitive "Quantified Self"[J]. Computer, 2013, 46 (10): 105- 108
doi: 10.1109/MC.2013.339
[7]
KUNZE K, UTSUMI Y, SHIGA Y, et al. I know what you are reading: recognition of document types using mobile eye tracking [C] // Proceedings of the 2013 International Symposium on Wearable Computers (ISWC). New York: ACM, 2013: 113-116.
[8]
BERZAK Y, KATZ B, LEVY R. Assessing language proficiency from eye movements in reading [J]. arXiv Preprint: 1804.07329, 2018.
[9]
WALLACE R, MCMILLAN C. EyeDoc: documentation navigation with eye tracking [J]. arXiv Preprint: 1903.00040, 2019.
[10]
DUSSIAS P E Uses of eye-tracking data in second language sentence processing research[J]. Annual Review of Applied Linguistics, 2010, 30: 149- 166
doi: 10.1017/S026719051000005X
[11]
CHEN Z, SHI B E Using variable dwell time to accelerate gaze-based web browsing with two-step selection[J]. International Journal of Human Computer Interaction, 2019, 35 (3): 240- 255
doi: 10.1080/10447318.2018.1452351
[12]
CHIRCOP L, RADHAKRISHNAN J, SELENER L, et al. Markitup: crowdsourced collaborative reading [C] // CHI'13 Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2013: 2567-2572.
[13]
TASHMAN C S, EDWARDS W K. Active reading and its discontents: the situations, problems and ideas of readers [C] // Proceedings of the SIG-CHI Conference on Human Factors in Computing Systems. New York: ACM, 2011: 2927-2936.
[14]
BIEDERT R, BUSCHER G, SCHWARZ S, et al. The text 2.0 framework: writing web-based gaze-controlled realtime applications quickly and easily [C] // Proceedings of the 2010 workshop on Eye Gaze in Intelligent Human Machine Interaction. New York: ACM, 2010: 114-117.
[15]
BUSCHER G, DENGEL A, VAN ELST L, et al. Generating and using gaze-based document annotations [C] // CHI'08 extended abstracts on Human factors in computing systems. New York: ACM, 2008: 3045-3050.
[16]
程时伟, 孙煜杰 面向阅读教学的眼动数据可视化批注方法[J]. 浙江工业大学学报, 2017, 45 (6): 610- 614 CHENG Shi-wei, SUN Yu-jie Eye movement data visualization based annotation for reading teaching[J]. Journal of Zhejiang University of Technology, 2017, 45 (6): 610- 614
doi: 10.3969/j.issn.1006-4303.2017.06.004
[17]
KAR A, CORCORAN P A review and analysis of eye-gaze estimation systems, algorithms and performance evaluation methods in consumer platforms[J]. IEEE Access, 2017, 5: 16495- 16519
doi: 10.1109/ACCESS.2017.2735633
[18]
ZHANG C, CHI J N, ZHANG Z H, et al Gaze estimation in a gaze tracking system[J]. Science China Information Sciences, 2011, 54 (11): 2295- 2306
doi: 10.1007/s11432-011-4243-6
[19]
周小龙, 汤帆扬, 管秋, 等 基于3D人眼模型的视线跟踪技术综述[J]. 计算机辅助设计与图形学学报, 2017, 29 (9): 1579- 1589 ZHOU Xiao-long, TANG Fan-yang, GUAN Qiu, et al A survey of 3D eye model based gaze tracking[J]. Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (9): 1579- 1589
doi: 10.3969/j.issn.1003-9775.2017.09.001
[20]
金纯, 李娅萍 视线追踪系统中注视点估计方法研究[J]. 自动化仪表, 2016, 37 (5): 32- 35 JIN Chun, LI Ya-ping Estimation method of the fixation point in gaze tracking system[J]. Process Automation Instrumentation, 2016, 37 (5): 32- 35
[21]
张昀, 赵荣椿, 赵歆波, 等. 视线跟踪技术的2D和3D方法综述[C] // 第十三届全国信号处理学术年会(CCSP-2007)论文集. 济南: [s. n.], 2007: 223-229. ZHANG Yun, ZHAO Rong-chun, ZHAO Xin-bo, et al. A review of 2d and 3d eye gaze tracking techniques [C] // 13rd Signal Processing (CCSP-2007). Jinan: [s. n.], 2007: 223-229.
[22]
ZHANG X. Appearance-based gaze estimation in the wild [C] // Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). Washington: IEEE CS, 2015: 4511-4520.
[23]
ZHANG X, SUGANO Y, FRITZ M, et al Mpiigaze: real-world dataset and deep appearance-based gaze estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 41 (1): 162- 175
[24]
SELA M, XU P, HE J, et al. Gazegan-unpaired adversarial image generation for gaze estimation [J]. arXiv Preprint: 1711.09767, 2017.
[25]
PALMERO C, SELVA J, BAGHERI M A, et al. Recurrent cnn for 3D gaze estimation using appearance and shape cues [J]. arXiv Preprint: 1805.03064, 2018.
[26]
ZHAO T, YAN Y, PENG J, et al Guiding intelligent surveillance system by learning-by-synthesis gaze estimation[J]. Pattern Recognition Letters, 2019, 125: 556- 562
doi: 10.1016/j.patrec.2019.02.008
[27]
程时伟, 孙志强 用于移动设备人机交互的眼动跟踪方法[J]. 计算机辅助设计与图形学学报, 2014, (8): 1354- 1361 CHENG Shi-wei, SUN Zhi-qiang An approach to eye tracking for mobile device based interaction[J]. Journal of Computer-Aided Design and Computer Graphics, 2014, (8): 1354- 1361
[28]
VILLANUEVA A, CABEZA R A novel gaze estimation system with one calibration point[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 2008, 38 (4): 1123- 1138
doi: 10.1109/TSMCB.2008.926606
[29]
JI Q, ZHU Z, et al Eye and gaze tracking for interactive graphic display[J]. Machine Vision and Applications, 2004, 15 (3): 139- 148
[30]
GUESTRIN E D, EIZENMAN M General theory of remote gaze estimation using the pupil center and corneal reflections[J]. IEEE transactions on bio-medical engineering, 2006, 53 (6): 1124- 1133
doi: 10.1109/TBME.2005.863952
[31]
WANG J, YUAN X, LIU Z An extraction method of pupil and corneal reflection centers based on image processing technology[J]. CAAI Transactions on Intelligent Systems, 2012, 5
[32]
MORIMOTO C H, MIMICA M R M Eye gaze tracking techniques for interactive applications[J]. Computer Vision and Image Understanding, 2005, 98 (1): 4- 24
doi: 10.1016/j.cviu.2004.07.010
[33]
FISCHLER M A, BOLLES R C Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24 (6): 381- 395
doi: 10.1145/358669.358692
[34]
王润民, 桑农, 丁丁, 等 自然场景图像中的文本检测综述[J]. 自动化学报, 2018, 44 (12): 3- 31 WANG Run-Min, SANG Nong, DING Ding, et al Text detection in natural scene image: a survey[J]. Journal of Automatica Sinica, 2018, 44 (12): 3- 31
[35]
LIAO M H, SHI B G, BAI X, et al. Textboxes: a fast text detector with a single deep neural network [C] // Proceedings of the 31st AAAI Conference on Artificial Intelligence. Menlo Park AAAI, 2017: 4161-4167.
[36]
ZHANG Z, ZHANG C Q, SHEN W, et al. Multi-oriented text detection with fully convolutional network [C] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington: IEEE CS, 2016: 4159-4167.
[37]
LIU Y L, JIN L W. Deep matching prior network: toward tighter multi-oriented text detection [C] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington: IEEE CS, 2017: 3454-3461.
[38]
SHI B, BAI X, BELONGIE S. Detecting oriented text in natural images by linking segments [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington: IEEE CS, 2017: 2550-2558.
[39]
ZHOU X Y, YAO C, WEN H, et al. EAST: an efficient and accurate scene text detector [C] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington: IEEE CS, 2017: 2642-2651.
[40]
OSTU N A threshold selection method from gray-histogram[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66
doi: 10.1109/TSMC.1979.4310076
[41]
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington: IEEE CS, 2005, 1: 886-893.
[42]
DE C, T E, BABU B R, et al Character recognition in natural images[J]. Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), 2009, 7: 273- 280
[43]
ESTER M, KRIEGEL H P, XU X. A density-based algorithm for discovering clusters in large spatial databases with noise [C] // International Conference on Knowledge Discovery and Data Mining (KDD). New York: ACM, 1996, 96(34): 226-231.
[44]
DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding [J]. arXiv Preprint: 1810.04805, 2018.
[45]
CHOPRA S, AULI M, Rush A M. Abstractive sentence summarization with attentive recurrent neural networks [C] // Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT). San Diego: NAACL, 2016: 93-98.