Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (6): 1106-1114    DOI: 10.3785/j.issn.1008-973X.2020.06.007
Civil Engineering     
Numerical simulation of shield tool cutting concrete based on HJC model
Wei-lin SU1,2(),Xing-Gao LI1,2,*(),Yu XU2,3,Da-long JIN1,2
1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
2. School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
3. China Railway First Survey and Design Institute Group Co. Ltd, Xi’an 710043, China
Download: HTML     PDF(1749KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The parameter determination of Holmquist-Johnson-Cook dynamic constitutive model (HJC Model) was analyzed, and the failure process of concrete under cutting was numerically simulated based on the HJC Model to reveal the cutting resistance and its variation when the concrete was cut by shield tools. A concrete block cutting test was designed to correct the parameters of the HJC Model, and then the influence of cutting speed and depth on cutting resistance were further studied. Results show that the calculation results of the numerical simulation based on HJC Model can preliminarily reflect the cutting resistance and its variation. The initial normal resistance fluctuates sharply when the cutting tool cuts into the concrete surface, while the remaining material will fall off and the cutting force will suddenly drop to zero when the cutting tool approaches the free surface of the test block, and this progress is relatively gentle in the numerical simulation. The rate effect parameter mainly affects the fluctuation range of normal cutting resistance, while the damage parameter affects both the average value and the fluctuation range. Normal cutting resistance increases exponentially with cutting speed and increases linearly with cutting depth. The HJC model can reflect the relationship between concrete crushing failure and material strain rate as well as the linear superposition effect of the normal cutting resistance due to the cutting depth.



Key wordsshield cutting tool      concrete cutting      HJC Model      cutting resistance      numerical calculation     
Received: 04 March 2019      Published: 06 July 2020
CLC:  TU 921  
Corresponding Authors: Xing-Gao LI     E-mail: suwelin@126.com;lixg@bjtu.edu.cn
Cite this article:

Wei-lin SU,Xing-Gao LI,Yu XU,Da-long JIN. Numerical simulation of shield tool cutting concrete based on HJC model. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1106-1114.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.06.007     OR     http://www.zjujournals.com/eng/Y2020/V54/I6/1106


基于HJC模型的盾构刀具切削混凝土数值模拟

为了揭示盾构刀具切削混凝土材料时的阻力大小及变化规律,研究Holmquist-Johnson-Cook动态本构模型(HJC模型)参数的确定方法,并据此对混凝土受切削破坏过程进行数值模拟. 设计室内混凝土试块切削试验,根据试验结果对HJC模型参数进行修正,进一步计算分析切削速度与切削深度对切削阻力的影响. 研究表明,基于HJC模型的数值计算结果可基本反映盾构刀具切削混凝土的阻力大小及变化规律;刀具在切入混凝土表面时,法向切削阻力的波动幅度较大,在切削接近试块自由面时会出现剩余材料整块脱落、切削力骤降为0的现象,该过程在数值模拟中相对平缓;在相同条件下,率效应参数主要影响法向切削阻力的波动幅度,损伤参数则同时影响法向切削阻力的平均值与波动幅度;法向切削阻力随切削速度呈指数形式增加,随切削深度呈线性增加;HJC模型可反映混凝土压碎破坏与材料应变率间的关系及法向切削阻力随深度的线性叠加效应.


关键词: 盾构刀具,  混凝土切削,  HJC模型,  切削阻力,  数值计算 
Fig.1 HJC strength Model
Fig.2 HJC damage Model
Fig.3 State equation in HJC Model
Fig.4 Keyword file tab of HJC Model
Fig.5 HJC limit surface and Mohr-Coulomb criterion envelope
Fig.6 Strength parameters fitted by test data
Fig.7 State Equation parametesr fitted by Hugoniot test data
Fig.8 Rate effect parameter C fitting
Fig.9 Cutting test of concrete specimens
参数类型 符号 数值 单位
基本参数 ρ 2110 kg/m3
G 8.75×103 MPa
T 1.62 MPa
fc 24.45 MPa
率效应参数 C 0.012 ?
ESP0 1.0 ?
强度参数 A 0.272 ?
B 1.50 ?
N 0.87 ?
SFMAX 20 ?
状态方程参数 p1 1.78×103 MPa
pc 8.15 MPa
μl 0.16 ?
μc 6.99×10?4 ?
K1 9.23 GPa
K2 141.24 GPa
K3 136.50 GPa
损伤参数 D1 0.04 ?
D2 1.0 ?
EFMIN 0.01 ?
Tab.1 Parameter value of concrete HJC constitutive model
Fig.10 Diagram for force analysis of cutting concrete
Fig.11 Finite element model of concrete cutting
Fig.12 Plasticity dynamic distribution in concrete cutting
Fig.13 Normal cutting resistance changes with time
Fig.14 Change of normal cutting resistance with time for different values of strain rate parameter
Fig.15 Change of normal cutting resistance with time for different values of damage parameter
Fig.16 Change of normal cutting resistance with time for different cutting speeds
Fig.17 Average normal cutting resistance changes with cutting speed
Fig.18 Change of normal cutting resistance with time for different cutting depths
Fig.19 Average normal cutting resistance changes with cutting depth
[1]   宋青君, 王卫东, 周健 考虑地铁盾构隧道穿越影响的桩基和基坑支护设计[J]. 岩土工程学报, 2010, (Suppl. 2): 314- 318
SONG Qing-jun, WANG Wei-dong, ZHOU Jian Design of foundation and excavation engineering considering influence of tunnel shield construction[J]. Chinese Journal of Geotechnical Engineering, 2010, (Suppl. 2): 314- 318
[2]   程康, 夏唐代, 梁荣柱, 等 盾构开挖下邻近既有桩基的竖向响应分析[J]. 岩土工程学报, 2018, 40 (Suppl. 2): 42- 46
CHENG Kang, XIA Tang-dai, LIANG Rong-zhu, et al Vertical response analysis of adjacent existing single pile under tunneling[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (Suppl. 2): 42- 46
[3]   曹宝飞, 朱逢斌 盾构隧道邻近地下连续墙围护结构施工影响研究[J]. 防灾减灾工程学报, 2017, 37 (6): 931- 937
CAO Bao-fei, ZHU Feng-bin The impact due to shield tunnel adjacent the existing foundation pit[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37 (6): 931- 937
[4]   袁大军, 王飞. 盾构切削大直径钢筋混凝土群桩的理论与实践[M]. 北京: 科学出版社, 2017.
[5]   R?NMAN K E A model describing rock cutting with conical picks[J]. Rock Mechanics and Rock Engineering, 1985, 18 (2): 131- 140
doi: 10.1007/BF01019602
[6]   UCGUL M, FIELKE J M, SAUNDERS C Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling[J]. Information Processing in Agriculture, 2015, 2 (2): 130- 141
doi: 10.1016/j.inpa.2015.07.001
[7]   叶勇, 沈剑云 岩石切削过程中破坏机制的离散元分析[J]. 工具技术, 2008, 42 (12): 29- 32
YE Yong, SHEN Jian-yun Study on failure mechanics in rock cutting process with distinct element method[J]. Tool Engineering, 2008, 42 (12): 29- 32
doi: 10.3969/j.issn.1000-7008.2008.12.007
[8]   王飞. 盾构直接掘削大直径钢筋混凝土群桩研究[D]. 北京: 北京交通大学, 2014.
WANG Fei. Study on shield cutting large diameter reinforced concrete piles directly[D]. Beijing: Beijing Jiaotong University, 2014.
[9]   周里群, 关汗青, 李军 基于三维离散元法的沥青混凝土切削过程数值分析[J]. 机械设计与研究, 2015, 31 (6): 83- 86
ZHOU Li-qun, GUAN Han-qing, LI Jun Cutting numerical study for asphalt concrete-based on 3d discrete element method[J]. Machine Design and Research, 2015, 31 (6): 83- 86
[10]   HOLMQUIST T J, JOHNSON G R A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78 (5): 051003
doi: 10.1115/1.4004326
[11]   Livermore Software Technology Corporation. LS-DYNA keywords user’s manual (version 971/Rev5) [M]. California: Livermore Software Technology Corporation, 2010: 467-469.
[12]   中国建筑科学研究院. 普通混凝土力学性能试验方法标准GB/T 50081-2002 [S]. 北京: 中国建筑工业出版社, 2003.
[13]   杨同, 徐川, 王宝学, 等 岩土三轴试验中的粘聚力与内摩擦角[J]. 中国矿业, 2007, 16 (12): 104- 107
YANG Tong, XU Chuan, WANG Xue-bao, et al The cohesive strength and the friction angle in rock-soil triaxial rests[J]. China Mining Magazine, 2007, 16 (12): 104- 107
doi: 10.3969/j.issn.1004-4051.2007.12.032
[14]   王永刚, 张远平, 王礼立 C30混凝土冲击绝热关系和Grüneisen型状态方程的实验研究[J]. 物理学报, 2008, 57 (12): 7789- 7793
WANG Yong-gang, ZANG Yuan-ping, WANG Li-li Experimental study on the shock Hugoniot relationship and the Grüneisen-type equation of state for C30 concrete[J]. Acta Physica Sinica, 2008, 57 (12): 7789- 7793
doi: 10.3321/j.issn:1000-3290.2008.12.061
[15]   GRADY D Shock equation of state properties of concrete[J]. Transactions on the Built Environment, 1996, 22 (1): 405- 414
[16]   高飞, 王明洋, 张先锋, 等 水泥砂浆的平板撞击实验与高压状态方程研究[J]. 振动与冲击, 2018, 37 (12): 41- 47
GAO Fei, WANG Ming-yang, ZHANG Xian-feng, et al A study on planar impact and equation of sate for cement mortar[J]. Journal of Vibration and Shock, 2018, 37 (12): 41- 47
[17]   熊益波, 陈剑杰, 胡永乐, 等 混凝土Johnson-Holmquist本构模型关键参数研究[J]. 工程力学, 2012, 29 (1): 121- 127
XIONG Yi-bo, CHEN Jian-jie, HU Yong-le, et al Study on the key parameters of the Johnson-Holmquist Constitutive Model for concrete[J]. Engineering Mechanics, 2012, 29 (1): 121- 127
[18]   林皋, 闫东明, 肖诗云, 等 应变速率对混凝土特性及工程结构地震响应的影响[J]. 土木工程学报, 2005, 38 (11): 1- 8
LIN Gao, YAN Dong-ming, XIAO Shi-yun, et al Strain rate effects on the behavior of concrete and the seismic response of concrete structure[J]. China Civil Engineering Journal, 2005, 38 (11): 1- 8
doi: 10.3321/j.issn:1000-131X.2005.11.001
[19]   闫东明, 林皋, 徐平 三向应力状态下混凝土动态强度和变形特性研究[J]. 工程力学, 2007, 24 (3): 58- 64
YAN Dong-ming, LIN Gao, XU Ping Dynamic strength and deformation of concrete in triaxial stress state[J]. Engineering Mechanics, 2007, 24 (3): 58- 64
doi: 10.3969/j.issn.1000-4750.2007.03.010
[20]   肖诗云, 林皋, 逯静洲, 等 应变率对混凝土抗压特性的影响[J]. 哈尔滨建筑大学学报, 2002, 35 (5): 35- 39
XIAO Shi-yun, LIN Gao, LU Jing-zhou, et al Effect of strain rate on dynamic behavior of concrete in compression[J]. Journal of Harbin University of Civil Engineering and Architecture, 2002, 35 (5): 35- 39
[21]   董毓利, 谢和平 不同应变率下混凝土受压全过程的实验研究及其本构模型[J]. 水利学报, 1997, 28 (7): 72- 77
DONG Yu-li, XIE He-ping Experimental study and constitutive model on concrete under compression with different strain rate[J]. Journal of Hydraulic Engeering, 1997, 28 (7): 72- 77
doi: 10.3321/j.issn:0559-9350.1997.07.013
[22]   GARY G, BAILLY P Behaviour of quasi-brittle material at high strain rate. Experiment and modelling[J]. European Journal of Mechanics-A/Solids, 1998, 17 (3): 403- 420
doi: 10.1016/S0997-7538(98)80052-1
[23]   孙吉书, 窦远明, 周戟, 等 应变速率对混凝土抗压特性影响的试验研究[J]. 混凝土与水泥制品, 2011, 38 (5): 1- 3
SUN Ji-shu, DOU Yuan-ming, ZHOU Ji, et al Experimental investigation on effect of strain rate on the compressive properties of concrete[J]. China Concrete and Cement Products, 2011, 38 (5): 1- 3
doi: 10.3969/j.issn.1000-4637.2011.05.001
[1] YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 358-366.
[2] TAN Chao, WEI Zheng-ying, HU Fu-sheng, LI Ben-qiang, HAN Zhi-hai. Numerical analysis and experimental study of atmospheric plasma spray process[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2284-2292.
[3] HUANG Jia-hai,QIU Min-xiu,FANG Wen-min. Heat transfer in the gap of friction pairs in hydroviscous drive[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1934-1940.