Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 135-142    DOI: 10.3785/j.issn.1008-973X.2020.01.016
Computer Technology, Information Engineering     
Three-dimensional dynamic surface alignment based on isometric random walk graph
Zhi-hao CHENG1(),Xiang PAN1,*(),San-yuan ZHANG2,Ya-nan REN1
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1278KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A space-time isometric random walk graph was proposed in order to improve the alignment accuracy of three-dimensional dynamic surfaces under noise and occlusion. Graph nodes were defined according to the product space of sampling point sets, and pruning was performed based on spatial-temporal adjacency. The edge weight was defined by the geodesic distance. The isometric mapping problem was formulated into the choice among a random walk graph. The alignment results were computed by Markov chain theory. The experimental results of different dynamic surface databases show that the proposed algorithm can obtain a consistent alignment for three-dimensional dynamic surface with obvious noise and holes. The aligning accuracy of the algorithm is better than the existing algorithms.



Key wordsthree-dimensional dynamic surface alignment      geodesic distance      space-time isometric random walk graph      Markov chain theory     
Received: 08 November 2018      Published: 05 January 2020
CLC:  TP 391  
Corresponding Authors: Xiang PAN     E-mail: 2512370979@qq.com;panx@zjut.edu.cn
Cite this article:

Zhi-hao CHENG,Xiang PAN,San-yuan ZHANG,Ya-nan REN. Three-dimensional dynamic surface alignment based on isometric random walk graph. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 135-142.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.016     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/135


基于等距随机游走图的三维动态曲面对准

为了提高三维动态曲面在噪声和遮挡下的对准精度,提出时空等距随机游走图算法. 该算法根据相邻两帧采样点的乘积空间定义图节点,通过时空相邻性进行节点裁剪处理. 以测地距离定义图边约束,将等距映射转化为图稳定性节点选择的随机游走问题. 通过马尔可夫链理论,计算得到最终的对应结果. 通过对不同动态曲面数据库的实验分析表明,该算法针对具有明显噪声和空洞的三维动态曲面能够得到一致性对准关系,性能优于已有算法.


关键词: 三维动态曲面对准,  测地距离,  时空等距随机游走图,  马尔可夫链理论 
Fig.1 Algorithm flowchart of space-time isometric random walk alignment
Fig.2 Effect of sampling frequency on our accuracy
Fig.3 Effect of sampling frequency on our running efficiency
Fig.4 Sampling results of some three-dimensional models
Fig.5 Quantitative analysis of DFAUST database
Fig.6 Visualization matching results of each algorithm for DFAUST database(from top to bottom:IRWG,KM,RAVAC,LRST,GMDSA,CCM)
Fig.7 Quantitative analysis of DFAUST database
Fig.8 Visualization matching results of each algorithm for SCPA database(from top to bottom:IRWG,KM,RAVAC,LRST,GMDSA,CCM)
Fig.9 Comparison results between LRST and IRWG
Fig.10 Visualization matching results of each algorithm for MVPS database(from top to bottom:IRWG,KM,RAVAC,LRST,CCM)
算法 Jay Saskia Abhijeet
KM 0.294 1 0.288 5 0.259 5
IRWG 0.062 1 0.085 7 0.077 9
RAVAC 0.331 2 0.294 4 0.286 9
LRST 0.226 7 0.199 8 0.235 1
GMDSA N/A N/A N/A
CCM 0.385 6 0.351 3 0.376 9
Tab.1 Quantitative analysis of MVPS database
帧数 每帧顶点数 KM IRWG RAVAC LRST GMDSA CCM
290 6 890 38 461 1 131 3 051 1 614 N/A 859
500 3 463 34 716 490 3 379 1 361 N/A 417
145 4 970 17 332 754 2 185 1 054 N/A 168
Tab.2 Running time of different correspondence algorithms s
[1]   GUO K, XU F, WANG Y, et al. Robust non-rigid motion tracking and surface reconstruction using l0 regularization [C] // IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3083-3091.
[2]   SAHILLIO?LU Y, YEMEZ Y Partial 3D correspondence from shape extremities[J]. Computer Graphics Forum, 2015, 33 (6): 63- 76
[3]   BRONSTEIN A M, BRONSTEIN M M, KIMMEL R Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (5): 1168- 72
doi: 10.1073/pnas.0508601103
[4]   潘翔, 王学成, 张三元 基于等距二分图的三维模型局部对齐[J]. 计算机辅助设计与图形学学报, 2016, (3): 480- 487
PAN Xiang, WANG Xue-cheng, ZHANG San-yuan 3D partial correspondence based on isometric bipartite graph[J]. Journal of Computer-Aided Design and Computer Graphics, 2016, (3): 480- 487
doi: 10.3969/j.issn.1003-9775.2016.03.014
[5]   郭梦丽, 达飞鹏, 邓星, 等 基于关键点和局部特征的三维人脸识别[J]. 浙江大学学报: 工学版, 2017, 51 (03): 584- 589
GUO Meng-li, DA Fei-peng, DENG Xing, et al 3D face recognition based on keypoints and local feature[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (03): 584- 589
[6]   OVSJANIKOV M, QUENTIN M, FACUNDO M, et al One point isometric matching with the heat kernel[J]. Computer Graphics Forum, 2010, 29 (5): 1555- 1564
doi: 10.1111/j.1467-8659.2010.01764.x
[7]   COSMO L, ALBARELLI A, CREMERS D Consistent partial matching of shape collections via sparse modeling[J]. Computer Graphics Forum, 2017, 36 (1): 209- 221
doi: 10.1111/cgf.12796
[8]   RODOL? E, COSMO L, BRONSTEIN M M, et al Partial functional correspondence[J]. Computer Graphics Forum, 2017, 36 (1): 222- 236
doi: 10.1111/cgf.12797
[9]   L?HNER Z, VESTNER M, BOYARSKI A, et al. Effi-cient deformable shape correspondence via kernel matching [C] // International Conference on 3d Vision. Qingdao: [s.n.], 2017: 517-526.
[10]   LITANY O, RODOL? E, BRONSTEIN A M, et al Fully spectral partial shape matching[J]. Computer Graphics Forum, 2017, 36 (2): 247- 258
doi: 10.1111/cgf.13123
[11]   AFLALO Y, DUBROVINA A, KIMMEL R Spectral generalized multi-dimensional scaling[J]. International Journal of Computer Vision, 2013, 118 (3): 1- 13
[12]   战江涛, 刘强, 柴春雷 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. 浙江大学学报: 工学版, 2011, 45 (1): 30- 36
ZHAN Jiang-tao, LIU Qiang, CHAI Chun-lei Facial feature tracking using three-dimensional model and Gabor wavelet[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (1): 30- 36
[13]   TUNG T, MATSUYAMA T Geodesic mapping for dynamic surface alignment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (5): 901- 913
doi: 10.1109/TPAMI.2013.179
[14]   MUSTAFA A, KIM H, HILTON A. 4D match trees for non-rigid surface alignment [C] // European Conference on Computer Vision. Amsterdan: Springer, 2016: 213-229.
[15]   LIAO B, XIAO C, PANG Z Efficient feature tracking of time-varying surfaces using multi-scale motion flow propagation[J]. Computer-Aided Design, 2013, 45: 1394- 1407
doi: 10.1016/j.cad.2013.06.015
[16]   SAHILLIO?LU Y, YEMEZ Y Scale normalization for isometric shape matching[J]. Computer Graphics Forum, 2012, 31 (7): 2233- 2240
doi: 10.1111/j.1467-8659.2012.03216.x
[17]   SENETA E. Non-negative matrices and Markov chains [M]. New York: Springer, 2006.
[18]   CHO M, LEE J, LEE K M. Reweighted random walks for graph matching [C] // European Conference on Computer Vision. Crete: Springer, 2010: 492-505.
[19]   BOGO F, ROMERO J, PONSMOLL G, et al. Dynamic FAUST: registering human bodies in motion [C] // IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5573-5582.
[20]   STARCK J, HILTON A Surface capture for performance-based animation[J]. IEEE Computer Graphics and Applications, 2007, 27 (3): 21- 31
doi: 10.1109/MCG.2007.68
[21]   VLASIC D, PEERS P, BARAN I, et al Dynamic shape capture using multi-view photometric stereo[J]. ACM Transactions on Graphics (TOG), 2009, 28 (5): 1- 11
[1] Shou-guo ZHENG,Yong-de ZHANG,Wen-tian XIE,Hu FAN,Qing WANG. Aircraft final assembly line modeling based on digital twin[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 843-854.
[2] Shi-lin ZHANG,Si-ming MA,Zi-qian GU. Large margin metric learning based vehicle re-identification method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 948-956.
[3] Peng SONG,De-dong YANG,Chang LI,Chang GUO. An adaptive siamese network tracking algorithm based on global feature channel recognition[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 966-975.
[4] Jun CAI,Gang ZHAO,Yong YU,Qiang-wei BAO,Sheng DAI. A rapid reconstruction method of simulation model based on point cloud and design model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 905-916.
[5] Hong-li WANG,Bin GUO,Si-cong LIU,Jia-qi LIU,Yun-gang WU,Zhi-wen YU. End context-adaptative deep sensing model with edge-end collaboration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 626-638.
[6] Teng ZHANG,Xin-long JIANG,Yi-qiang CHEN,Qian CHEN,Tao-mian MI,Piu CHAN. Wrist attitude-based Parkinson's disease ON/OFF state assessment after medication[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 639-647.
[7] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[8] Zi-ye YONG,Ji-chang GUO,Chong-yi LI. weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 555-562.
[9] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[10] Hui-ya HU,Shao-yan GAI,Fei-peng DA. Face frontalization based on generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 116-123.
[11] Yang-bo CHEN,Guo-dong YI,Shu-you ZHANG. Surface warpage detection method based on point cloud feature comparison[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 81-88.
[12] You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
[13] Tai-heng ZHANG,Biao MEI,Lei QIAO,Hao-jie YANG,Wei-dong ZHU. Detection method for composite hole guided by texture boundary[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2294-2300.
[14] Dong LIANG,Xin-yu LIU,Jia-xing PAN,Han SUN,Wen-jun ZHOU,Shun’ichi KANEKO. Foreground segmentation under dynamic background based on self-updating co-occurrence pixel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2405-2413.
[15] Yao JIN,Wei ZHANG. Real-time fire detection algorithm with Anchor-Free network architecture[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2430-2436.