Computer Technology, Information Engineering |
|
|
|
|
Three-dimensional dynamic surface alignment based on isometric random walk graph |
Zhi-hao CHENG1( ),Xiang PAN1,*( ),San-yuan ZHANG2,Ya-nan REN1 |
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China 2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract A space-time isometric random walk graph was proposed in order to improve the alignment accuracy of three-dimensional dynamic surfaces under noise and occlusion. Graph nodes were defined according to the product space of sampling point sets, and pruning was performed based on spatial-temporal adjacency. The edge weight was defined by the geodesic distance. The isometric mapping problem was formulated into the choice among a random walk graph. The alignment results were computed by Markov chain theory. The experimental results of different dynamic surface databases show that the proposed algorithm can obtain a consistent alignment for three-dimensional dynamic surface with obvious noise and holes. The aligning accuracy of the algorithm is better than the existing algorithms.
|
Received: 08 November 2018
Published: 05 January 2020
|
|
Corresponding Authors:
Xiang PAN
E-mail: 2512370979@qq.com;panx@zjut.edu.cn
|
基于等距随机游走图的三维动态曲面对准
为了提高三维动态曲面在噪声和遮挡下的对准精度,提出时空等距随机游走图算法. 该算法根据相邻两帧采样点的乘积空间定义图节点,通过时空相邻性进行节点裁剪处理. 以测地距离定义图边约束,将等距映射转化为图稳定性节点选择的随机游走问题. 通过马尔可夫链理论,计算得到最终的对应结果. 通过对不同动态曲面数据库的实验分析表明,该算法针对具有明显噪声和空洞的三维动态曲面能够得到一致性对准关系,性能优于已有算法.
关键词:
三维动态曲面对准,
测地距离,
时空等距随机游走图,
马尔可夫链理论
|
|
[1] |
GUO K, XU F, WANG Y, et al. Robust non-rigid motion tracking and surface reconstruction using l0 regularization [C] // IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3083-3091.
|
|
|
[2] |
SAHILLIO?LU Y, YEMEZ Y Partial 3D correspondence from shape extremities[J]. Computer Graphics Forum, 2015, 33 (6): 63- 76
|
|
|
[3] |
BRONSTEIN A M, BRONSTEIN M M, KIMMEL R Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (5): 1168- 72
doi: 10.1073/pnas.0508601103
|
|
|
[4] |
潘翔, 王学成, 张三元 基于等距二分图的三维模型局部对齐[J]. 计算机辅助设计与图形学学报, 2016, (3): 480- 487 PAN Xiang, WANG Xue-cheng, ZHANG San-yuan 3D partial correspondence based on isometric bipartite graph[J]. Journal of Computer-Aided Design and Computer Graphics, 2016, (3): 480- 487
doi: 10.3969/j.issn.1003-9775.2016.03.014
|
|
|
[5] |
郭梦丽, 达飞鹏, 邓星, 等 基于关键点和局部特征的三维人脸识别[J]. 浙江大学学报: 工学版, 2017, 51 (03): 584- 589 GUO Meng-li, DA Fei-peng, DENG Xing, et al 3D face recognition based on keypoints and local feature[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (03): 584- 589
|
|
|
[6] |
OVSJANIKOV M, QUENTIN M, FACUNDO M, et al One point isometric matching with the heat kernel[J]. Computer Graphics Forum, 2010, 29 (5): 1555- 1564
doi: 10.1111/j.1467-8659.2010.01764.x
|
|
|
[7] |
COSMO L, ALBARELLI A, CREMERS D Consistent partial matching of shape collections via sparse modeling[J]. Computer Graphics Forum, 2017, 36 (1): 209- 221
doi: 10.1111/cgf.12796
|
|
|
[8] |
RODOL? E, COSMO L, BRONSTEIN M M, et al Partial functional correspondence[J]. Computer Graphics Forum, 2017, 36 (1): 222- 236
doi: 10.1111/cgf.12797
|
|
|
[9] |
L?HNER Z, VESTNER M, BOYARSKI A, et al. Effi-cient deformable shape correspondence via kernel matching [C] // International Conference on 3d Vision. Qingdao: [s.n.], 2017: 517-526.
|
|
|
[10] |
LITANY O, RODOL? E, BRONSTEIN A M, et al Fully spectral partial shape matching[J]. Computer Graphics Forum, 2017, 36 (2): 247- 258
doi: 10.1111/cgf.13123
|
|
|
[11] |
AFLALO Y, DUBROVINA A, KIMMEL R Spectral generalized multi-dimensional scaling[J]. International Journal of Computer Vision, 2013, 118 (3): 1- 13
|
|
|
[12] |
战江涛, 刘强, 柴春雷 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. 浙江大学学报: 工学版, 2011, 45 (1): 30- 36 ZHAN Jiang-tao, LIU Qiang, CHAI Chun-lei Facial feature tracking using three-dimensional model and Gabor wavelet[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (1): 30- 36
|
|
|
[13] |
TUNG T, MATSUYAMA T Geodesic mapping for dynamic surface alignment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (5): 901- 913
doi: 10.1109/TPAMI.2013.179
|
|
|
[14] |
MUSTAFA A, KIM H, HILTON A. 4D match trees for non-rigid surface alignment [C] // European Conference on Computer Vision. Amsterdan: Springer, 2016: 213-229.
|
|
|
[15] |
LIAO B, XIAO C, PANG Z Efficient feature tracking of time-varying surfaces using multi-scale motion flow propagation[J]. Computer-Aided Design, 2013, 45: 1394- 1407
doi: 10.1016/j.cad.2013.06.015
|
|
|
[16] |
SAHILLIO?LU Y, YEMEZ Y Scale normalization for isometric shape matching[J]. Computer Graphics Forum, 2012, 31 (7): 2233- 2240
doi: 10.1111/j.1467-8659.2012.03216.x
|
|
|
[17] |
SENETA E. Non-negative matrices and Markov chains [M]. New York: Springer, 2006.
|
|
|
[18] |
CHO M, LEE J, LEE K M. Reweighted random walks for graph matching [C] // European Conference on Computer Vision. Crete: Springer, 2010: 492-505.
|
|
|
[19] |
BOGO F, ROMERO J, PONSMOLL G, et al. Dynamic FAUST: registering human bodies in motion [C] // IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5573-5582.
|
|
|
[20] |
STARCK J, HILTON A Surface capture for performance-based animation[J]. IEEE Computer Graphics and Applications, 2007, 27 (3): 21- 31
doi: 10.1109/MCG.2007.68
|
|
|
[21] |
VLASIC D, PEERS P, BARAN I, et al Dynamic shape capture using multi-view photometric stereo[J]. ACM Transactions on Graphics (TOG), 2009, 28 (5): 1- 11
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|