Civil Engineering, Municipal Engineering |
|
|
|
|
Flexural behavior of sandwich composite panels with core material of expanded polystyrene thermal insulation motar |
Bin LUO( ),Wei HUANG*( ),Xiang MA,Bin LI,Wen-cai ZHOU,Shan-shan REN |
Civil Engineering Institute, Xi’an University of Architecture and Technology, Xi’an 710055, China |
|
|
Abstract In order to improve the industrial production efficiency of prefabricated concrete sandwich insulation composite panels (CSICPs) for fabricated buildings, the effects of density, water absorption, thermal conductivity, compressive strength, flexural strength, tension-compression ratio, and softening coefficient of the block material were considered using the method of orthogonal experimental design. The optimum mix proportion of core materials, i.e. expanded polystyrene thermal insulation mortar (ETIM), which was suitable for CSICP was obtained by the analysis of range and variance. Based on this, comparison tests of bending performance were conducted among two CSICPs with ETIM core, one CSICP with expanded polystyrene board (EPS) core and one ordinary concrete composite slab with steel bar truss. Analysis were conducted from the perspectives of ultimate bearing capacity, load-deflection curves, load-rebar strain curves and anti-slip performance. Results show that the four specimens share similar flexural behaviors and undergo elastic phase, elastic-plastic phase and failure phase. The shape of precast bottom panel and the core material have great impact on the flexural performance of CSICPs. The flexural behavior of CSICP with ETIM core is better than that of CSICP with EPS core. Configuration of steel bar truss has a significant improvement on the flexural performance and anti-horizontal-slip performance of CSICPs.
|
Received: 04 September 2018
Published: 21 November 2019
|
|
Corresponding Authors:
Wei HUANG
E-mail: Robin198595@163.com;huanwei2005@126.com
|
采用发泡聚苯乙烯保温砂浆芯材的夹芯叠合板受弯性能
为了提升装配式建筑预制夹芯保温叠合板(CSICPs)的工业化生产效率,从材料密度、吸水率、导热系数、抗压强度、抗折强度、压折比及软化系数等指标出发,借助正交试验设计方法,采用极差及方差分析,确定适用于夹芯保温叠合板的发泡聚苯乙烯保温砂浆(ETIM)的最佳配比. 在此基础上,针对2块ETIM夹芯保温叠合板、1块发泡聚苯乙烯(EPS)板夹芯保温叠合板及1块普通钢筋桁架叠合板进行受弯性能对比试验,分别从承载能力、荷载-挠度曲线、荷载-钢筋应变曲线及抗滑移性能方面展开分析. 结果表明:夹芯保温叠合板与普通钢筋桁架叠合板的受弯破坏过程类似,均经历弹性阶段、弹塑性阶段及破坏阶段;预制底板构造形式及芯材对夹芯叠合板的受弯性能有较大影响;采用ETIM芯材的夹芯保温叠合板的受弯性能优于采用EPS板的夹芯保温叠合板;钢筋桁架的配置对提升夹芯保温叠合板的受弯及抗滑移性能有较为显著的作用.
关键词:
发泡聚苯乙烯保温砂浆(ETIM),
配合比,
叠合板,
受弯性能,
滑移
|
|
[1] |
中华人民共和国住房和城乡建设部. 工业化建筑评价标准: GB/ T 51129—2015 [S]. 北京: 中国建筑工业出版社, 2015: 6-9.
|
|
|
[2] |
JIANG H, GUO Z, LIU J, et al The shear behavior of precast concrete sandwich panels with W-shaped SGFRP shear connectors[J]. KSCE Journal of Civil Engineering, 2018, 22 (4): 1- 11
|
|
|
[3] |
李砚波, 杜媛媛, 门东浩 混凝土夹芯板受弯性能分析[J]. 建筑结构, 2015, (16): 91- 95 LI Guan-bo, DU Yuan-yuan, MEN Dong-hao Analysis on bending performance of concrete sandwich panels[J]. Building Structure, 2015, (16): 91- 95
|
|
|
[4] |
杜媛媛. 混凝土夹芯板的结构优化分析[D]. 天津: 天津大学, 2016. DU Yuan-yuan. Optimization analysis of concrete sandwich panels [D]. Tianjing: Tianjin University, 2016.
|
|
|
[5] |
DANIEL R J J, PRABAKAR J, ALAGUSUNDARAMOORTHY P Flexural behavior of precast concrete sandwich panels under different loading conditions such as punching and bending[J]. Alexandria Engineering Journal, 2016, (Suppl.1): 1- 12
|
|
|
[6] |
TOMLINSON D, FAM A Analytical approach to flexural response of partially composite insulated concrete sandwich walls used for cladding[J]. Engineering Structures, 2016, (122): 251- 266
|
|
|
[7] |
MOHAMAD N, KHALIFA H, SAMAD A A, et al Structural performance of recycled aggregate in CSP slab subjected to flexural load[J]. Construction and Building Materials, 2016, 115: 669- 680
doi: 10.1016/j.conbuildmat.2016.04.086
|
|
|
[8] |
JOSEPH J D R, PRABAKAR J, ALAGUSUNDARAMOORTHY P Precast concrete sandwich one-way slabs under flexural loading[J]. Engineering Structures, 2017, 138: 447- 457
doi: 10.1016/j.engstruct.2017.02.033
|
|
|
[9] |
SCHACKOW A, EFFTING C, FOLGUERAS M V, et al Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent[J]. Construction and Building Materials, 2014, 57 (9): 190- 197
|
|
|
[10] |
孙立国, 杜成斌, 王大鹏 EPS材料力学性能测试及装饰构件数值仿真[J]. 建筑材料学报, 2013, 16 (4): 637- 641 SUN Li-guo, DU Cheng-bin, WANG Da-peng Mechanical analysis and numerical simulation of EPS exterior decorative element[J]. Journal of Building Materials, 2013, 16 (4): 637- 641
doi: 10.3969/j.issn.1007-9629.2013.04.015
|
|
|
[11] |
王俊, 赵基达, 胡宗羽 我国建筑工业化发展现状与思考[J]. 土木工程学报, 2016, (5): 1- 8 WANG Jun, ZHAO Ji-da, HU Zong-yu Review and thinking on development of building industrialization in China[J]. Civil Engineering Journal, 2016, (5): 1- 8
|
|
|
[12] |
秦尚松, 刘元珍, 李珠, 等. 保温砂浆墙体保温系统温度效应研究 [J]. 工程力学, 2011(增1): 64-68. QIN Shang-song, LIU Yuan-zhen, LI Zhu, et al. Study on temperature effects on walls with thermal insulation mortar system [J]. Engineering Mechanics, 2011(Suppl.1): 64-68.
|
|
|
[13] |
陈兵, 刘宁, 邓初晴 EPS保温砂浆性能试验研究[J]. 哈尔滨工程大学学报, 2012, 33 (6): 671- 676 CHEN Bing, LIU Ning, DENG Chu-qing Experimental studies on the properties of EPS thermal insulating mortar[J]. Journal of Harbin Engineering University, 2012, 33 (6): 671- 676
doi: 10.3969/j.issn.1006-7043.201105084
|
|
|
[14] |
杨增科, 黄炜, 张敏 基于不同保温形式装配式复合墙抗震性能试验研究[J]. 西安建筑科技大学学报:自然科学版, 2018, (1): 51- 56 YANG Zeng-ke, HUANG Wei, ZHANG Min Experimental study on aseismic performance of assembly type composite wall based on different heat preservation forms[J]. Journal of Xi’an University of Architecture and Technology: Natural Science, 2018, (1): 51- 56
|
|
|
[15] |
孙钢柱 改性EPS保温砂浆配合比及性能试验研究[J]. 郑州大学学报: 工学版, 2011, 32 (5): 7- 10 SUN Gang-zhu Mix proportion and performance of modified EPS thermal insulating mortar[J]. Journal of Zhengzhou University: Engineering Science, 2011, 32 (5): 7- 10
|
|
|
[16] |
胡欣. 发泡聚苯乙烯(EPS)颗粒表面改性工艺及其保温砂浆性能的研究[D]. 南昌: 南昌大学, 2008: 9-16. HU Xin. Study on surface modification technology of EPS particles and properties of thermal insulation mortar [D]. Nanchang: Nanchang University, 2008: 9-16.
|
|
|
[17] |
中华人民共和国住房和城乡建设部. 胶粉聚苯颗粒外墙外保温系统: JGT/158—2004 [S]. 北京: 中国建筑工业出版社, 2004.
|
|
|
[18] |
中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T70—2009 [S]. 北京: 中国建筑工业出版社, 2009.
|
|
|
[19] |
中华人民共和国国家质量监督检验检疫总局. 水泥胶砂强度检验方法(ISO法): GB/T17571—1999 [S]. 北京: 中国建筑工业出版社, 1999.
|
|
|
[20] |
中华人民共和国国家质量监督检验检疫总局. 绝热材料稳态热阻及有关特性的测定防护热板法: GB/T10295—2008 [S]. 北京: 中国建筑工业出版社, 2008.
|
|
|
[21] |
STEEVES C, ELECK N Collapse mechanisms of sandwich beams with composite face sheets and a foam core, loaded in three-point bending. part I: analytical models and minimum weight design[J]. Sederi Yearbook, 2004, 12 (3): 7- 26
|
|
|
[22] |
STEEVES C, ELECK N Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. part Ⅱ: experimental investigation and numerical modelling[J]. International Journal of Mechanical Sciences, 2004, 46 (4): 585- 608
doi: 10.1016/j.ijmecsci.2004.04.004
|
|
|
[23] |
中华人民共和国住房和城乡建设部. 膨胀聚苯板薄抹灰外墙外保温系统: JG149—2015 [S]. 北京: 中国标准出版社, 2015: 3-4.
|
|
|
[24] |
陕西省住房和城乡建设厅. 装配式复合墙结构技术规程: DBJ61/T 94—2015 [S]. 陕西: 中国建材工业出版社, 2015: 47.
|
|
|
[25] |
中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012 [S]. 北京: 中国建筑工业出版社, 2012: 17-25.
|
|
|
[26] |
曹万林, 张洁, 董宏英, 等 带钢筋桁架高强再生混凝土板受弯性能试验研究[J]. 建筑结构学报, 2014, 35 (10): 31- 38 CAO Wan-lin, ZHANG Jie, DONG Hong-ying, et al Experimental research on flexural performance of high strength recycled aggregate concrete slabs with steel bar truss[J]. Journal of Building Structures, 2014, 35 (10): 31- 38
|
|
|
[27] |
EIINEA A, SALMON D C, FOGARASI G J, et al State of the art of precast sandwich panel system[J]. PCI Journal, 1991, 36 (6): 90- 101
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|