Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (6): 1139-1147    DOI: 10.3785/j.issn.1008-973X.2019.06.013
Mechanical and Energy Engineering     
Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique
Hao ZHOU(),Kun ZHANG,Ya-wei LI,Jia-kai ZHANG
Zhejiang University, Institute for Thermal Power Engineering, State Key Laboratory of Clean Energy Utilization, Hangzhou 310027, China
Download: HTML     PDF(1564KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The computational fluid dynamics (CFD) model based on dynamic mesh technique was used to simulate the slagging experiment of pulverized coal-corn stalk blended combustion (the proportion of corn straw is 0, 5% and 10%, respectively) in order to investigate the slagging characteristics of pulverized coal and biomass blended combustion. The thermal conductivity of the slag and the surface temperature of the slag were considered in the simulation; the simulation results were compared with the experimental results. The simulation results show that the mass flow rate of fly ash impacting decreases with the deposition because the deposition (leading to the dynamic mesh) changes the flow field near the probe. In the three conditions, the deposition efficiency of the fly ash on the probe surface was 75%, 80% and 87%, respectively, at 100 min, which indicates that the corn-blended condition is easier to slag. Real-time variation of deposition can be realized by the dynamic mesh technique. In terms of the heat transfer characteristics, the modelling values of slag surface temperature and the heat flux through the deposit are in agreement with experimental ones. The reduction rate of heat flux within 100 min for the three cases was 52.13%, 46.96% and 53.25%, respectively.



Key wordsash deposition      computational fluid dynamics (CFD)      dynamic mesh technique      biomass      surface temperature      effective thermal conductivity     
Received: 07 November 2018      Published: 22 May 2019
CLC:  TK 16  
Cite this article:

Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.06.013     OR     http://www.zjujournals.com/eng/Y2019/V53/I6/1139


采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟

为了研究煤粉和生物质掺烧形成飞灰的结渣特性,采用基于动网格技术的计算流体动力学(CFD)模型对煤粉-玉米秸秆掺烧积灰结渣实验(玉米秸秆掺比分别为0、5%和10%)进行数值模拟. 模拟过程中考虑灰渣导热系数和灰渣表面温度的变化,并将模拟结果和实验结果进行比较. 模拟结果表明:飞灰撞击质量流率随沉积进行而减小,这是因为沉积物引起的动网格变化影响探针附近流场;3种工况下飞灰在探针表面的最终沉积效率分别为75%、80%和87%,说明了玉米秸秆掺烧形成飞灰的易结渣倾向;灰渣实时形貌在动网格执行下得以实现. 在换热特性方面,灰渣表面温度和热流密度的模拟值和实验值较为接近;3种工况下0~100 min热流密度降低率分别为52.13%、46.96%和53.25%.


关键词: 灰沉积,  计算流体动力学(CFD),  动网格技术,  生物质,  表面温度,  有效导热系数 
Fig.1 Sketch map of 300 kW pilot experimental rig
Fig.2 Sketch map of deposition sampling probe in furnace
灰成分(wt.%) 灰成分(wt.%) 工业分析(wt.%,ad) 元素分析(wt.%,daf)
项目 SH Corn 项目 SH Corn 项目 SH Corn 项目 SH Corn
Na2O 0.27 0.77 Cl 0.13 3.53 C 78.42 49.69 Mad 2.8 12.1
MgO 0.40 6.18 K2O 0.53 8.78 H 4.46 5.51 Vad 31.1 52.5
Al2O3 37.29 10.41 CaO 3.55 9.30 N 0.94 2.01 FCad 55.3 10.7
SiO2 50.63 52.76 TiO2 1.16 0.51 S 0.79 0.38 Aad 10.8 24.7
P2O5 0.32 1.66 MnO 0.03 0.08 O 15.39 42.41 HHV (MJ/kg) 27.4 12.4
SO3 0.90 2.16 Fe2O3 4.78 3.84 ? ? ? ? ? ?
Tab.1 Properties of the SH coal and corn straw
Fig.3 Time-dependent surface temperature of ash deposit with different ratios of corn straw in SH coal
Fig.4 Effective thermal conductivity of ash deposit vesus thickness with different ratios of corn straw in SH coal
Fig.5 Schematic diagram of computational domain used for numerical simulation
Fig.6 Meshing of computational domain used for numerical simulation
Fig.7 Mass of deposition on probe surface corresponding to different computational meshing numbers
Fig.8 Calculated results of liquid slag fraction with changing temperature with different ratios of corn straw in SH coal
Fig.9 Sketch map for displacement calculation of nodes in dynamic mesh
Fig.10 Schematic diagram of slagging numerical simulation
Fig.11 Mass flow of impact and deposition on surface of probe during deposition
Fig.12 Thickness of ash deposit versus time with different ratios of corn straw in SH coal
Fig.13 Ash deposit shape variation versus time
Fig.14 Surface temperature of ash deposit versus time with different ratios of corn straw in SH coal
Fig.15 Heat flux through probe versus time with different ratios of corn straw in SH coal
[1]   徐向乾, 路春美, 张梦珠, 等 生物质与煤共燃技术[J]. 热力发电, 2008, (5): 50- 53
XU Xiang-qian, LU Chun-mei, ZHANG Meng-zhu, et al Co-combustion technology of biomass with coal[J]. Thermal Power Generation, 2008, (5): 50- 53
doi: 10.3969/j.issn.1002-3364.2008.05.013
[2]   孙迎, 王永征, 栗秀娟, 等 生物质燃烧积灰、结渣与腐蚀特性[J]. 锅炉技术, 2011, 42 (4): 66- 69
SUN Ying, WANG Yong-zheng, LI Xiu-juan, et al The ash deposition, slagging and corrosion characteristics of biomass[J]. Boiler Technology, 2011, 42 (4): 66- 69
doi: 10.3969/j.issn.1672-4763.2011.04.018
[3]   DENG L, JIN X, LONG J M, et al. Ash deposition behaviors during combustion of raw and water washed biomass fuels[J/OL]. Journal of the Energy Institute, 2018. https://doi.org/10.1016/j.joei.2018.07.009.
[4]   蔡永铁. CFB富氧燃烧气氛下飞灰的沉积试验及沉积过程模拟[D]. 哈尔滨: 哈尔滨工业大学, 2014.
CAI Yong-tie. Experimental studies and numerical simulations of fly ash deposition in oxy-fuel CFB[D]. Harbin: Harbin Institude of Technology, 2014.
[5]   杨琦, 王辉, 曹伟, 等 锅炉飞灰沉积的数值模拟综述[J]. 节能技术, 2015, 33 (6): 495- 502
YANG Qi, WANG Hui, CAO Wei, et al A review of boiler fly ash deposition with numerical method[J]. Energy Conservation Technology, 2015, 33 (6): 495- 502
doi: 10.3969/j.issn.1002-6339.2015.06.003
[6]   MA L, YANG X, INGHAM D, et al Predicting ash deposition behaviour for co-combustion of palm kernel with coal based on CFD modelling of particle impaction and sticking[J]. Fuel, 2016, 165: 41- 49
doi: 10.1016/j.fuel.2015.10.056
[7]   TOMECZEK J, KRZYSZTOF W Two-dimensional modelling of deposits formation on platen superheaters in pulverized coal boilers[J]. Fuel, 2009, 88 (8): 1466- 1471
doi: 10.1016/j.fuel.2009.02.023
[8]   KRZYSZTOF W, KALISZ S A practical numerical approach for prediction of particulate fouling in PC boilers[J]. Fuel, 2012, 97 (7): 38- 48
[9]   GARCíA P M, VAKKILAINEN E, HYPP?NEN T 2D dynamic mesh model for deposit shape prediction in boiler banks of recovery boilers with different tube spacing arrangements[J]. Fuel, 2015, 158 (467): 139- 151
[10]   GARCíA P M, VAKKILAINEN E, HYPP?NEN T The contribution of differently-sized ash particles to the fouling trends of a pilot-scale coal-fired combustor with an ash deposition CFD model[J]. Fuel, 2017, 189 (1): 120- 130
[11]   ZHOU H, ZHOU B, DONG K, et al Research on the slagging characteristics of easy to slagging coal in a pilot scale furnace[J]. Fuel, 2013, 109 (7): 608- 615
[12]   MA W C, ZHOU H, ZHANG J K, et al Behavior of slagging deposits during coal and biomass co-combustion in a 300 kW down-fired furnace[J]. Energy and Fuels, 2018, 32 (4): 4399- 4409
doi: 10.1021/acs.energyfuels.7b03050
[13]   杨琦. 基于动网格技术及浸润边界法的飞灰沉积数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
YANG Qi. Research ondeposition of fly ash by dynamic mesh technique & immersed boundary method[D]. Harbin: Harbin Institude of Technology, 2016.
[14]   ANSYS Inc. Fluent16.1用户手册[M]: 2016.
[15]   WIELAND C, KREUTZKAM B, BALAN G, et al Evaluation, comparison and validation of deposition criteria for numerical simulation of slagging[J]. Applied Energy, 2012, 93: 184- 192
doi: 10.1016/j.apenergy.2011.12.081
[1] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[2] Hao ZHOU,Zi-xian BAI,Zhen-huan CHEN,Jia-kai ZHANG. Characteristics of ash deposition growth in mixed atmosphere of NH3 and SO3[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 389-397.
[3] Jia-kai ZHANG,Li NIE,Ke-fa CEN,Xiao JIANG,Hao ZHOU. Experimental study on slagging characteristics during coal and biomass co-combustion with on-line measurement technique[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1955-1963.
[4] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[5] Jiang-kuan XING,Hai-ou WANG,Kun LUO,Yun BAI,Jian-ren FAN. Random forest model for predicting kinetic parameters of biomass devolatilization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 605-612.
[6] Wei-wu WANG,Fei-nan LI,Di WANG,Qin WANG. Urban ventilation corridor construction based on ventilation potential and quantitative analysis of wind characteristics[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 470-481.
[7] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[8] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[9] Song-tao JIN,Chang LIU,Li-ying WANG,Yang YANG. Heat transfer coefficient of passive house exterior wall in cold area[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1966-1976.
[10] ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 440-445.
[11] CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2262-2270.
[12] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[13] SONG Rui-xiang, ZHANG Qing-guo, YU Hai-jing, XU Li, SHI Min-min. Estimations to impervious surface and their effects of warming for city using remote sensing data[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 1051-1056.
[14] GONG Bin, YU Chun-jiang, WANG Zhun, LUO Zhong-yang. Characteristic of deposits on different heating surfaces from a biomass-fired grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1578-1584.
[15] CHEN Chao, ZHOU Jin-song, XIANG Yang-yang, GU Shan, LUO Zhong-yang. Biomass staged-gasification characteristics in high-temperature entrained-flow bed[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 626-631.