Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Sensor signal processing and omnidirectional locomotion control of a bio-inspired hexapod robot
CHEN Wei-hai, LIU Tao, WANG Jian-hua, REN Guan-jiao, WU Xing-ming
School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
Download:   PDF(2192KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Control method based on a central pattern generator (CPG) was proposed to deal with the issue of intelligent locomotion control of bio-inspired hexapod robots. The traditional CPG-based control was unable to control the foot trajectory of robots. For the proposed CPG control method, trajectory generators were added to the control scheme to control  foot trajectory. Thus,  omnidirectional walking control could be realized by simply adjusting the value of control parameters. Two artificial neural networks for sensor signal processing were developed to overcome complexity in sensory feedback and parameter tuning in CPG control. The neural networks accomplished the fusion of multi-sensory signals, generating the values of the control parameters for robot behavior control. In this way, the robot realized autonomous obstacle-avoiding. A hexapod robot prototype was designed to conduct two real robot experiments in different situations. The experimental results proved that  the effectiveness of proposed omnidirectional locomotion control algorithm and obstacle-avoiding algorithm.



Published: 28 August 2015
CLC:  TP 242  
Cite this article:

CHEN Wei-hai, LIU Tao, WANG Jian-hua, REN Guan-jiao, WU Xing-ming. Sensor signal processing and omnidirectional locomotion control of a bio-inspired hexapod robot. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 430-438.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.03.006     OR     http://www.zjujournals.com/eng/Y2015/V49/I3/430


仿生六足机器人传感信息处理及全方向运动控制

针对传统CPG控制方法无法很好地控制机器人足端轨迹的问题,提出基于中枢神经模式发生器(CPG)的控制方法.在CPG控制方法中加入用于足端轨迹控制的轨迹发生器模块,通过调节参数值可以实现机器人的全方向运动控制.为降低传统CPG控制中传感信息反馈以及参数调整的复杂程度,设计2种用于躲避前方和两侧障碍物的传感信号处理的神经网络.该模块实现多传感信号的融合,生成用以控制机器人运动行为的各个参数值,实现机器人的自主避障.设计一个仿生六足机器人样机,将其分别放置在墙角和狭窄空间中进行自主避障行走实验,结果证明了机器人全方向运动控制算法和自主避障算法的可行性.

[1] 王田苗, 孟偲, 裴葆青, 等. 仿壁虎机器人研究综述[J]. 机器人, 2007, 29(3): 290-297.
WANG Tian-miao, MENG Cai, PEI Bao-qing, et al. Summary on gecko robot research [J]. Robot, 2007, 29(3): 290-297.
[2] RITZMANN R E, QUINN R D, FISCHER M S. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots[J]. Arthropod Structure and Development, 2004, 33(3): 361-379.
[3] DELCOMYN F, NELSON M E, COCATRE-ZILGIEN J H. Sense organs of insect legs and the selection of sensors for agile walking robots [J]. The International Journal of Robotics Research, 1996, 15(2): 113-127.
[4] GO Y, YIN X, BOWLING A. Navigability of multi-legged robots [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(1): 18.
[5] SCHILLING M, HOINVILLE T, SCHMITZ J, et al. Walknet, a bio-inspired controller for hexapod walking [J]. Biological Cybernetics, 2013, 107(4): 397-419.
[6] SCHILLING M, CRUSE H, ARENA P. Hexapod walking: an expansion to Walknet dealing with leg amputations and force oscillations [J]. Biological Cybernetics, 2007, 96(3): 323-340.
[7] IJSPEERT A J. Central pattern generators for locomotion control in animals and robots: a review [J]. Neural Networks, 2008, 21(4): 642-653.
[8] KIMURA H, FUKUOKA Y, COHEN A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts [J]. The International Journal of Robotics Research, 2007, 26(5): 475-490.
[9] 吴启迪, 刘成菊, 张家奇, 等. 生物诱导的机器人行走控制研究进展[J]. 中国科学F辑:信息科学, 2009, 39(10): 1080-1094.
WU Qi-di,LIU Cheng-ju,ZHANG Jia-qi,et al. Researh progress of robot driving control based on biological induction [J]. Science in China:Series F:Information Sciences, 2009, 39(10): 1080-1094.
[10] 黄博, 姚玉峰, 孙立宁. 基于中枢神经模式的四足机器人步态控制[J]. 机械工程学报, 2010, 46(7): 16.
HUANG Bo, YAO Yu-feng, SUN Li-ning. Quadruped robot gait control based on central pattern generator [J]. Journal of Mechanical Engineering, 2010, 46(7): 16.
[11] LIU C J, WANG D W, CHEN Q J. Central pattern generator inspired control for adaptive walking of biped robots [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(5): 1206-1215.
[12] LIU C J, CHEN Q J, WANG G X. Adaptive walking control of quadruped robots based on central pattern generator (CPG) and reflex [J]. Journal of Control Theory and Applications, 2013, 11(3): 386-392.
[13] ZHANG X L, E M C, ZENG X Y, et al. Adaptive walking of a quadrupedal robot based on layered biological reflexes [J]. Chinese Journal of Mechanical Engineering, 2012, 25(4): 654-664.
[14] WANG M, YU J Z, TAN M, et al. A CPG-based sensory feedback control method for robotic fish locomotion [C] ∥ Control Conference (CCC), 2011 30th Chinese. Shangdong: IEEE, 2011: 4115-4120.
[15] ZHANG D B, HU D W, SHEN L C, et al. Design of a central pattern generator for bionic-robot joint with angular frequency modulation [C] ∥ 2006 IEEE International Conference on Robotics and Biomimetics. Kunming:IEEE,2006: 1664-1669.
[16] STEINGRUBE S, TIMME M, WOERGOETTER F, et al. Self-organized adaptation of a simple neural circuit enables complex robot behavior [J]. Nature Physics, 2010, 6(3): 224-230.
[17] REN G J, CHEN W H, KOLODZIEJSKI C, et al. Multiple chaotic central pattern generators for locomotion generation and leg damage compensation in a hexapod robot [C] ∥ Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura-Algarve:IEEE, 2012: 2756-2761.
[18] DONNER M D. Real-time control of walking [M]. Boston:Birkhauser, 1987: 10-11.
[19] REN G J, CHEN W H, WANG J H, et al. Neural pattern generation and kinematics calculation for a hexapod robots adaptive locomotion control [C] ∥ Proceedings of the 3rd IFToMM International Symposium on Robotics and Mechatronics.  Singapore: Nanyang Technological University Research Publishing, 2013: 545-555.
[20] MONDADA F, FRANZI E, IENNE P. Mobile robot miniaturisation: A tool for investigation in control algorithms [M] . Berlin Heidelberg:Springer,1994: 501-513.
[21] PASEMANN F, HULSE M, ZAHEDI K. Evolved neurodynamics for robot control[C] ∥ European Symposium on Artificial Neural Networks(ESANN).Bruges, Belgium:Evere, 2003: 439-444.
[22] HUELSE M, PASEMANN F. Dynamical neural schmitt trigger for robot control [C] ∥ Proceedings of Artificial Neural Networks. New York: Springer, 2002: 783-788.

[1] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 706-713.
[2] TANG Zhi-dong, YUN Chao. Quick action coupling technology in full-automatic quick coupling device: a review[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 461-470.
[3] XU Xian jin, WU Long hui, YANG Xiao jun, TANG Liang, YANG Yong feng. Magnetic driving method of inspection robot for HVDC transmission lines[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1937-1945.
[4] ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po. Robot position and rotation calibration method based on precision of spatial mesh[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1980-1986.
[5] ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin. Steering performance of underwater glider in water column monitoring[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1637-1645.
[6] JIA Song min, LU Ying bin, WANG Li jia, LI Xiu zhi, XU Tao. Mobile robot human tracking using hierarchical features[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1677-1683.
[7] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1381-1386.
[8] DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan. Visual trajectory planning for mobile robots based on hybrid artificial potential field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1298-1306.
[9] ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao. Base frame calibration of circumferential splice drilling system based on visual measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1080-1087.
[10] JIANG Wen ting, GONG Xiao jin, LIU Ji lin. Incremental large scale dense semantic mapping[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 385-391.
[11] HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin. Posture optimization and smoothness for robot drilling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2261-2268.
[12] LI Wei, ZHAO Zhi gang, SHI Guang tian, MENG Jia dong. Solutions of kinematics and dynamics for parallel cable driven system with multi robots[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1916-1923.
[13] MA Zi ang, XIANG Zhi yu. Calibration and 3D reconstruction with omnidirectional ranging by optic flow camera[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1651-1657.
[14] HE Xue-jun, WANG Jin, LU Guo-dong, CHEN Li.
Optimization of robot image drawing sequence based on ant colony algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1139-1145.
[15] YUAN Kang-zheng, ZHU Wei-dong, CHEN Lei, XUE Lei, QI Wen-gang. Approach for calibrating position of displacement sensor mounted on robot end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 829-834.