Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Natural convection heat transfer of aqueous nanofluids with carbon nanotubes in a rectangular enclosure
LOU Bin1, XU Xu1, WANG Wen-long1, WANG Yu-fei1, FAN Li-wu2, YU Zi-tao2
1. College of Metrological and Measurement Engineering, China Jiliang University, Hangzhou 310018, China; 2. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1080KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 Natural convection heat transfer of aqueous nanofluids with carbon nanotubes in a rectangular enclosure was experimentally analyzed so as to evaluate the potential of carbon nanotubes employed in enhanced heat transfer technology. The distributions of average Nusselt number along the heat flux direction of the rectangular enclosure were obtained for nanofluids with various volume fractions at different Rayleigh numbers from 1.92×105to 2.52×106. The thermal conductivity and viscosity of the nanofluids were measured using the transient hotwire method and a rotational viscometer, respectively. The effect of volume fraction of carbon nanotubes on the thermal conductivity and viscosity were examined. The influence of thermal conductivity and viscosity on the natural convection heat transfer of the nanofluids was also investigated. The results show that the average Nusselt number, which represents the intensity of natural convection, increases with the increasing Rayleigh number. Comparing to pure water, the average Nusselt number of the nanofluids increases slightly as the volume fraction of carbon nanotubes increases at low Rayleigh numbers (Ra <8.5×105). The average Nusselt number of the nanofluids of 0.48% carbon nanotubes is greater than that of pure water at higher Rayleigh numbers (Ra>8.5×105), whereas the natural convection heat transfer of the nanofluids of 1.45% carbon nanotubes is deteriorated.



Published: 01 December 2014
CLC:  TK 121  
Cite this article:

LOU Bin, XU Xu, WANG Wen-long, WANG Yu-fei, FAN Li-wu, YU Zi-tao. Natural convection heat transfer of aqueous nanofluids with carbon nanotubes in a rectangular enclosure. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2196-2201.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.12.013     OR     http://www.zjujournals.com/eng/Y2014/V48/I12/2196


水基碳纳米管纳米流体在矩形腔内的自然对流传热

为了评估碳纳米管在强化传热技术中的应用潜力, 采用实验方法研究水基碳纳米管纳米流体在矩形封闭腔内的自然对流传热性能, 由实验得到瑞利数为1.92×105~2.52×106范围内不同颗粒体积分数的纳米流体沿矩形封闭腔热流方向的平均努塞尔数分布.采用瞬态热线法和旋转黏度仪测量水基碳纳米管纳米流体的导热系数和黏度,探究纳米流体导热系数和黏度与纳米颗粒体积分数的变化关系,分析纳米流体导热系数和黏度对纳米流体自然对流传热的影响.结果表明:在封闭腔内纳米流体沿热流方向的平均努塞尔数随着瑞利数的增加而增大,封闭腔内对流传热不断增强;与水的自然对流传热相比,在低瑞利数(Ra<8.5×105)时,纳米流体自然对流传热效果随着颗粒体积分数的增加而增强;在高瑞利数(Ra>8.5×105)时,体积分数为0.48%的纳米流体的平均努塞尔数比水大,自然对流传热得到强化,而体积分数为1.45%的纳米流体的平均努塞尔数比水小,自然对流传热减弱.

[1] 宣益民,李强.纳米流体能量传递理论与应用[M].北京:科学出版社, 2010: 14.
[2] 强爱红,许春建,周明.纳米流体对流传热的研究进展[J].化学工程, 2007, 35(11): 74-78.
QIANG Ai-hong, XU Chun-jian, ZHOU Ming. Convective heat transfer of nanofluids research[J]. Chemical Engineering, 2007, 35(11): 74-78.
[3] KHANAFER K, VAFAI K, LIGHTSTONE M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46(19): 3639-3653.
[4] HWANG K S, LEE J H, JANG S P. Buoyancy-driven heat transfer of water-based Al2O3 Nanofluids in a rectangular cavity[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4003-4010.
[5] OZTOP H F, ABU-NADA E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 1326-1336.
[6] ABU-NADA E, MASOUD Z, OZTOP H F, et al. Effect of nanofluid variable properties on natural convection in enclosures[J]. International Journal of Thermal Sciences, 2010, 49(3): 479-491.
[7] ABU-NADA E, MASOUD Z, HIJAZI A, et al. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids[J]. International Communications in Heat and Mass Transfer, 2008, 35(5): 657-665.
[8] NGUYEN C T, DESGRANGES F, ROY G, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1492-1506.
[9] YU Zi-tao, XU Xu, HU Ya-cai, et al. Numerical study of transient buoyancy-driven convective heat transfer of water-based nanofluids in a bottom-heated isosceles triangular enclosure[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3): 526-532.
[10] PUTRA N, ROETZEL W, DAS S K. Natural convection of nano-fluids[J]. Heat and Mass Transfer, 2003, 39 (8/9): 775-784.
[11] WEN Dong-sheng, DING Yu-long. Formulation of nanofluids for natural convective heat transfer applications[J]. International Journal of Heat and Fluid Flow, 2005, 26(6): 855-864.
[12] WEN Dong-sheng, DING Yu-long. Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids)[J]. IEEE Transactions on Nanotechnology, 2006, 5(3): 220-227.
[13] CHANG B H, MILLS A F, HERNANDEZ E. Natural convection of microparticle suspensions in thin enclosures[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1332-1341.
[14] MAXWELL J C. A Treatise on electricity and magnetism[M]. Oxford: Clarendon Press, 18-81.
[15] HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial and Engineering Chemistry Fundamentals, 1962, 1(3): 187-191.
[16] CHEN Hai-sheng, DING Yu-long, HE Yu-rong, et al. Rheological behaviour of ethylene glycol based titania nanofluids[J]. Chemical Physics Letters, 2007, 444 (4-6): 333-337.
[17] EINSTEIN A. Investigations on the theory of the Brownian movement[M]. New York: Courier Dover Publications, 1956.
[18] BRINKMAN H C. The viscosity of concentrated suspensions and solution[J]. The Journal of Chemical Physics, 1952, 20(4): 571-571.
[19] PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion, 1998, 11(2): 151-170.
[20] XIE Hua-qing, LEE H, YOUN W, et al. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities[J]. Journal of Applied Physics, 2003, 94(8): 4967-4971.
[21] PHUOC T X, MASSOUDI M, CHEN R H. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan[J]. International Journal of Thermal Sciences, 2011, 50 (1): 12-18.
[22] YU Zi-tao, FANG Xin, FAN Li-wu, et al. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes[J]. Carbon, 2013, 53: 227-285.
[23] HWANG Y, PARK H S, LEE J K, et al. Thermal conductivity and lubrication characteristics of nanofluids[J]. Current Applied Physics, 2006, 6(Supplement 1): e61e71.
[1] PAN Zhi-juan, HUANG Qun-xing, Moussa-Mallaye Alhadj-Mallah, WANG Jun, CHI Yong, YAN Jian-hua.
Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1166-1172.
[2] REN Li-bo, HAN Ji-tian, ZHAO Hong-xia. Numerical simulation of discrete particles in fluidized bed with immersed tube[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 150-156.
[3] ZHOU Hao, RUI Miao, CEN Ke-fa. Study of flow in porous media by LES-LBM coupling method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(9): 1660-1665.
[4] XU He-wei, ZHOU Hao, CEN Ke-fa. Measure carbon content in fly ash by infrared reflection method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 890-895.
[5] DIAO Jia-Pei, ZHOU Hao, CEN Ge-Fa. Radiation characteristics of syngas in  radiation waste heat boiler
at high temperature and high pressure
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(9): 1781-1786.
[6] WANG Hui, JIA Zhong-Yang, CA Ji-Cong, WANG Chao, DIAO Jia-Fei, NI Meng-Jiang. Experimental study of influencing factors on transmissivity of SiO2 nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(6): 1143-1148.