Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Modified two-surface steel hysteretic model considering complex strain history
WANG Tong1, XIE Xu1, TANG Zhan-zhan1, SHEN Chi2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. International Project Group, Chodai Co., Ltd.,  Ibaraki 305-0812, Japan
Download:   PDF(1594KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The shortcomings of modified two-surface hysteretic model, which is a steel elasto-plastic hysteretic constitutive model that consider both analysis accuracy and efficiency, were taken as research object. The problem that under complex strain history, sometimes the stress results obtained by the model are irrational since the plastic modulus at the critical point between elastic and plastic stage tends to infinite, was to be avoid. The existing modified two-surface model was remodified by improving its criterion of stress-strain path. The improving method of the analysis model under uniaxial and multiaxial stress state was given. The comparison results with analysis results and uniaxial tensile and compression tests, and a series of example analysis show that the improved model can precisely predict the hysteretic property of steel under complex strain history. The accuracy and applicability of the improving method were validated at material and structural member level. Results show that improvement of existing modified two-surface model can effectively raise the computational precision under complex strain history of the model.



Published: 10 September 2015
CLC:  U 443  
Cite this article:

WANG Tong, XIE Xu, TANG Zhan-zhan, SHEN Chi. Modified two-surface steel hysteretic model considering complex strain history. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1305-1312.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.07.015     OR     http://www.zjujournals.com/eng/Y2015/V49/I7/1305


考虑复杂应变历史的钢材修正双曲面滞回模型

针对兼顾精度和计算效率的钢材弹塑性滞回本构模型——修正双曲面模型在复杂应变历史条件下,由于弹-塑性过渡时塑性模量无穷大导致的应力计算结果不合理的缺陷,通过改进应力-应变路径的判别准则,对既有修正双曲面模型进行再修正,分别给出单轴应力状态和三维应力状态下的改进方法.通过与钢材单轴拉压试验结果的对比以及一系列相关算例的对比分析,证明了采用经改进后的双曲面滞回模型能够精确地模拟钢材在复杂应变历史条件下的滞回特性,从材料和结构构件2个层面验证了该改进方法的准确性和适用性.结果表明,对既有修正双曲面模型的改进能够有效地提高模型在复杂应变历史下的应力计算精度.

[1] 高圣斌,葛汉彬. 交替荷载作用下钢材本构模型的使用范围[J]. 中国公路学报,2008,21(6):69-75.
GAO Sheng-bin, GE Han-bin. Applicable range of steel constitutive models under cyclic load [J]. China Journal of Highway and Transport, 2008, 21(6): 69-75.
[2] GOTO Y, WANG Q, OBATA M. FEM analysis for hysteretic behavior of thin-walled column [J]. Journal of Structure Engineering, ASCE, 1998, 124(11): 1290-1301.
[3] MIYOSHI T, SAKIMOTO T, TSURUTA E, et al. Effect of hardening rules of steel on the analysis of cyclic behavior of steel structures [J]. Journal of Structural Engineering, JSCE, 2003, 49A: 403-413.
[4] SHI G, WANG M, BAI Y, et al. Experimental and modeling study of high-strength structural steel under cyclic loading [J]. Engineering Structures, 2012, 37: 113.
[5] 日本土木学会. 阪神淡路大震災における鋼構造物の震災の実態と分析[M]. 東京:丸善,1999.
[6] MORZ Z. An attempt to describe the behavior of metal under cyclic loads using a more general work hardening model [J]. Acta Mechanica, 1969, 7(2/3): 199-212.
[7] DALAFALIS Y F, POPOV E P. A model of nonlinearly hardening material for complex loading [J]. Acta Mechanica, 1975, 21(3): 173-192.
[8] DALAFALIS Y F, POPOV E P. Plastic interval variables formalism of cyclic plasticity [J]. Journal of Applied Mechanics, ASME, 1976, 43(4): 645-651.
[9] SHEN C. Development of a cyclic two-surface model for structural steels with yield plateau [D]. Nagoya: Nagoya University, 1993.
[10] SHEN C, MIZUNO E, USAMI T. A Generalized two-surface model for structural steels under cyclic loading [J]. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 1993, 471(I-2): 23-33.
[11] SHEN C, MAMAGHANI I, MIZUNO E, et al. Cyclic behavior of structural steel, II: theory [J]. Journal of Engineering Mechanics, ASCE, 1995, 121 (11): 11651172.
[12] 许红胜,熊辉. 钢结构塑性分析的新模型[J]. 工程力学,2004,21(5):161-165.
XU Hong-sheng, XIONG Hui. A new model for plastic analysis of steel structures [J]. Engineering Mechanics, 2004, 21(5): 161-165.
[13] 石永久,王萌,王元清. 结构钢材循环荷载下的本构模型研究[J]. 工程力学,2012,29(9):92-98.
SHI Yong-jiu, WANG Meng, WANG Yuan-qing. Study on constitutive model of structural steel under cyclic loading [J]. Engineering Mechanics, 2012, 29(9): 9298.
[14] 王萌,石永久,王元清,等. 循环荷载下钢材本构模型的应用研究[J]. 工程力学,2013,30(7):212-218.
WANG Meng, SHI Yong-jiu, WANG Yuan-qing, et al. Applications study on cyclic constitutive model of steel [J]. Engineering Mechanics, 2013, 30(7): 212-218.
[15] USAMI T, GAO S, GE H. Elastoplastic analysis of steel members and frames subjected to cyclic loading [J]. Engineering Structures, 2000, 22(2): 135-145.
[16] GE H, GAO S, USAMI T. Stiffened steel box columns. Part 1: cyclic behavior [J]. Earthquake Engineering and Structural Dynamics, 2009, 29(11): 1691-1706.

[1] CHEN Chong, YUAN Xing-fei. Fine analysis of section stress of steel strand[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 841-846.
[2] YANG Guo lin, DUAN Jun yi, YANG Xiao, XU Ya bin. Vibration characteristics of subgrade in expansive soil area under simulated rainfall and natural conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2319-2327.
[3] ZHANG Tingting, XIE Xu, PAN Xiaoyu. Tensile mechanical behavior of parallel wire cables with wire breaks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 841-847.
[4] WANG Zhen,WANG Jing quan,QI Jia nan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 864-870.
[5] ZHANG Jun feng, DAI Xiao song, ZOU Wei lie, XU Shun ping, LI Zi you. Experiments on pavement performance of solidified sediment modified with cement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2165-2171.
[6] LIN Cheng xiang, LING Dao sheng, ZHONG Shi ying. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1679-1691.
[7] WANG Lan, CHEN Gang, XING Yong ming, HU Jiang san. Deformation characteristics of asphalt mixture[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1805-1811.
[8] HU Ping-chuan, ZHOU Jian, WEN Xiao-gui, CHEN Yu-xiang, LI Yi-wen. Laboratory model experiment of electro-osmosis combined with loading and pneumatic fracturing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1434-1440.
[9] WANG Tong, WANG Yan, XIE Xu, ZHANG He. Seimic fragility of steel damper bearings in isolated  railway bridges with different-height piers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1909-1916.
[10] PAN Xiao-yu, XIE Xu, LI Xiao-zhang, SUN Wenzhi, ZHU Han-hua. Mechanical properties and grading method of corroded high-tensile steel wires[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1917-1924.
[11] TAO Yan-li, ZHOU Jian, GONG Xiao-nan. Experimental study on function mechanism of electrode materials upon electro-osmotic process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1618-1623.
[12] HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao. Modes of additional attenuation of Gmax and its influence on seismic site response[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1170-1179.
[13] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1068-1074.
[14] GUO Lin, CAI Yuan-qiang, GU Chuan, WANG Jun. Resilient and permanent strain behavior of soft clay under cyclic loading[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(12): 2111-2117.
[15] LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(10): 1805-1814.