Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge" /> Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge" /> Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge" /> 活性炭对储运油泥微波热解特性的影响
Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge
PAN Zhi-juan, HUANG Qun-xing, Moussa-Mallaye Alhadj-Mallah, WANG Jun, CHI Yong, YAN Jian-hua
Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1096KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effect of activate carbon on the pyrolysis behavior of petroleum sludge under microwave irradiation was studied to improve the pyrolysis efficiency of sluge and reduce energy consumption. Activated carbon was taken as microwave absorber. Mainly, gas chromatography (GC) was applied to analyze the gas phase composition of pyrolysis products, and gas chromatograph-mass spectrometer (GC-MS) was used to study the pyrolysis liquid products. the utilization ratio of microwave energy in the process of sludge pyrolysis was calculated for the first time. Results showed that the heating rate of petroleum sludge was 23.4 ℃/min when the power of microwave irradiation was 800 W. Through adding microwave absorber, the heating rate of pyrolysis was increased by more than 77%. Meanwhile, solid residues decreased by up to 24.7%, and gas product increased by 46.9% at most. In addtion, without microwvae absorber, the microwave energy utilization of sluge was 16.6%. While it could be increased by more than 12% by adding active carbon. The microwave energy utilization could be improved with the increase of active carbon content.



Published: 01 June 2015
CLC:  TK 121  
  TE 992  
Cite this article:

PAN Zhi-juan, HUANG Qun-xing, Moussa-Mallaye Alhadj-Mallah, WANG Jun, CHI Yong, YAN Jian-hua.

Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1166-1172.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.06.023     OR     http://www.zjujournals.com/eng/Y2015/V49/I6/1166


活性炭对储运油泥微波热解特性的影响

为了提高油泥的热解效率并降低能耗,研究添加不同比例的活性炭对油泥微波热解过程及产物特性的影响,以活性炭作为吸波介质,着重利用气相色谱分析热解产物中的气相组分,利用GC-MS研究热解液相产物.首次完成对油泥热解过程中微波能量利用率的计算.结果发现:当微波辐照功率为800 W时,升温速率为23.4 ℃/min;添加吸波介质可以使热解的升温速率提高77%以上,热解产物中的固体残留率最多降低24.7%,气体产量最多提高46.9%.此外,不添加吸波介质时,油泥对微波能量的利用率为16.6%;而添加活性炭后,微波能量利用率可以提高12% 以上,并且随着活性炭添加量的增大,能量利用率提高.

[1] 宋秀艳,周鑫宏;苏永新.国内外含油污泥的处理现状和发展前景[J].新疆石油科技, 2009, 19(02): 51-55.
SONG Xiu-yan, ZHOU Xin-hong, SU Yong-xin. The current situation and development prospect of oily sludge treatment at home and abroad[J]. Xinjiang Petroleum Science and Technology, 2009, 19(02): 51-55.
[2] 匡少平,吴信荣.含油污泥的无害化处理与资源化利用[M].北京:化学工业出版,2009: 219.
[3] HU G J, LI J B, ZENG G M. Recent development in the treatment of oily sludge from petroleum industry: a review [J]. Journal of Hazardous Materials, 2013, 261: 470490.
[4] 刘志群,白玉兴,黄春富.落地油泥污染及油土分离处理的工艺研究[J].环境保护科学, 2004, 30: 43-45.
LIU Zhi-qun, BAI Yu-xing, HUANG Chun-fu. Research on pollution of mixture consisted of crude oil and soil and technology of separated crude oil from the mixture[J]. Environmental Protection Science, 2004, 30: 43-45.
[5] 徐如良,韩子兴.油罐底泥的减量化和资源化技术[J].石油与天然汽化工,2004年, 33(5): 369-374.
XU Ru-liang, HAN Zi-xing. Reduction and regeneration technology of bottom sludge from oil tanks[J]. Chemical Engineering of Oil and Gas, 2004, 33(5): 369-374.
[6] 庞霞,张刚,李留仁,等.孤东采油厂含油泥砂理参数优选与机理分析研究[J].石油与天然汽化工, 2009, 38(1): 85-88.
PANG Xia, ZHANG Gang, LI Liu-reng, et al. Parameter optimization and mechanism analysis of processing oil-bearing sludge sand by hot water in gudong oil production plant [J]. Chemical Engineering of Oil and Gas, 2009, 38(1): 85-88.
[7] SCHEMIDT H, KAMINSKY W. Pyrolysis of oil sludge in a fluidised bed reactor [J]. Chemosphere, 2001, 45: 285-290.
[8] 宋薇,刘建国,聂永丰.含油污泥的热解特性研究[J].燃料化学学报,2008, 36(3): 286-290.
SONG Wei, LIU Jian-guo, NIE Yong-feng. Pyrolysis properties of oil sludge[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 286-290.
[9] 金钦汉,戴树策,黄卡玛.微波化学[M].北京:科学出版社,1999: 16-18.
[10] 雍兴跃,张建,祝威,等.半干化含聚油泥的微波热处理过程研究 [J].石油与天然汽化工, 2010, 39(4): 354-359.
YONG Xing-yue, ZHANG Jian, ZHU Wei, et al. Microwave heat treatment process of half dried oil sludge containing PAC[J]. Chemical Engineering of Oil and Gas, 2010, 39(4): 354-359.
[11] 王万福,李果,雍兴跃,等.油泥微波程序升温热转化[J].化工进展, 2011, 30(10): 2310231.
WANG Wan-fu, LI Guo, YONG Xing-yue, etc. Microwave thermal inversion of oily sludge by programmed temperature increasing [J]. Progress in Chemical Industry, 2011, 30(10): 2310231.
[12] 王同华,胡俊生,夏莉,等.微波热解污泥及产物组成的分析[J].沈阳建筑大学学报:自然科学版, 2008, 24(4): 662-666.
WANG Tong-hua, HU Jun-sheng, XIA Li, et al. Pyrolysis of sewage sludge by microwave radiation[J]. Journal of Shenyang Jianzhu University: Natural Science, 2008, 24(4): 662-666.
[1] REN Li-bo, HAN Ji-tian, ZHAO Hong-xia. Numerical simulation of discrete particles in fluidized bed with immersed tube[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 150-156.
[2] LOU Bin, XU Xu, WANG Wen-long, WANG Yu-fei, FAN Li-wu, YU Zi-tao. Natural convection heat transfer of aqueous nanofluids with carbon nanotubes in a rectangular enclosure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2196-2201.
[3] ZHOU Hao, RUI Miao, CEN Ke-fa. Study of flow in porous media by LES-LBM coupling method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(9): 1660-1665.
[4] XU He-wei, ZHOU Hao, CEN Ke-fa. Measure carbon content in fly ash by infrared reflection method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 890-895.
[5] DIAO Jia-Pei, ZHOU Hao, CEN Ge-Fa. Radiation characteristics of syngas in  radiation waste heat boiler
at high temperature and high pressure
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(9): 1781-1786.
[6] WANG Hui, JIA Zhong-Yang, CA Ji-Cong, WANG Chao, DIAO Jia-Fei, NI Meng-Jiang. Experimental study of influencing factors on transmissivity of SiO2 nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(6): 1143-1148.