Phenol, catechol, guaiacol and syringol, as lignin monomer model compounds, were pyrolyzed in a two-stage tubular reactor, and pyrolysis products were quantified by on-line gas chromatography (GCs). Inorganic gases (IGs), C1~C5 hydrocarbons (C1~C5 LHs), non-aryl oxygen-containing compound, phenols and aromatic hydrocarbon were quantified by GC. The purpose is to determine the effect of hydroxyl and methoxy on the ring-opening reaction of aromatic ring and product distribution during lignin pyrolysis process. Results show that hydroxyl and methoxy can improve the model compound conversion rate, and the existence of hydroxyl and methoxy affects the competition of aryl ring opening reaction, aryl substitution reaction and rearrangement reaction, leading to the obvious products distribution differences in the model compounds pyrolysis. The main products are formed from the ring-opening reaction, including IGs (mass fraction of 27.29%~33.56%) and C1~C5 LHs (20.46%~39.51%). The CO yield (23.82%~29.18%) is improved by hydroxyl, and reduced by methoxy. Methoxy enhances the CO2 formation with its yield in 0.19%~9.61%. Hydroxyl and methoxy reduce the mass selectivity of C1~ C5 hydrocarbon, but promote the formation of alkyl benzene, macromolecular compounds and coke.
Hua-mei YANG,Jing LI,Xi-hua DU. Pyrolysis and product analysis of lignin monomer model compounds. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 976-983.
TC-1701 长度:60 m(0.25 mm i.d.)(capillary column,GL Sciences)
FID
进样口:345 ℃ 检测器:300 ℃ 色谱柱温度:40 ℃保持10 min,以5 ℃/min升温到300 ℃,并保持30 min
苯、二甲基苯、茚、萘、甲基萘、苯酚、甲基苯酚、愈创木酚、紫丁香酚、邻苯二酚
Tab.1Online GC condition setting and detected products
Fig.2Mass selectivity of product groups obtained from lignin model compounds pyrolysis at 750 ℃
Fig.3Mass selectivity of phenols formed from lignin model compounds pyrolysis
Fig.4Mass selectivity of CO and CO2 formed from lignin model compounds pyrolysis
Fig.5Mass selectivity of C1~C5 LHs formed from lignin model compounds pyrolysis
Fig.6Mass selectivity of LOCs formed from lignin model compounds pyrolysis
Fig.7Mass selectivity of AHs formed from lignin model compounds pyrolysis
[1]
SAHA A, BASAK B B Scope of value addition and utilization of residual biomass from medicinal and aromatic plants[J]. Industrial Crops and Products, 2020, 145: 111979
doi: 10.1016/j.indcrop.2019.111979
[2]
KUMAR R, STREZOV V, WELDEKIDAN H, et al Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763
doi: 10.1016/j.rser.2020.109763
[3]
JEGERS H E, KLEIN M T Primary and secondary lignin pyrolysis reaction pathways[J]. Journal of Industrial and Engineering Chemistry, 1985, 24: 173- 183
[4]
杨义. 生物质催化热解和定向调控制取高品位液体燃料的研究[D]. 杭州: 浙江大学, 2019. YANG Yi. Research on catalytic pyrolysis of biomass to advanced liquid fuel[D]. Hangzhou: Zhejiang University, 2019.
[5]
HUANG Y, LIU S, ZHANG J, et al Volatile-char interactions during biomass pyrolysis: cleavage of C?C bond in a β-5 lignin model dimer by amino-modified graphitized carbon nanotube[J]. Bioresource Technology, 2020, 307: 123192
[6]
JIANG G Z, NOWAKOWSKI D J, BRIDGWATER A V Effect of the temperature on the composition of lignin pyrolysis products[J]. Energy and Fuels, 2010, 24: 4470- 4475
doi: 10.1021/ef100363c
[7]
ZHANG M, RESENDE F L P, MOUTSOGLOU A, et al Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 65- 71
doi: 10.1016/j.jaap.2012.05.009
[8]
衣雪. 生物质热解气相产物析出特性及本征动力学研究[D]. 吉林: 东北电力大学, 2019. YI Xue. Study on precipitation characteristics and intrinsic kinetics of biomass pyrolysis gas products[D]. Jilin: Northeast Electric Power University, 2019.
[9]
HUANG Y, GAO Y X, ZHOU H, et al Pyrolysis of palm kernel shell with internal recycling of heavy oil[J]. Bioresource Technology, 2019, 272: 77- 82
doi: 10.1016/j.biortech.2018.10.006
[10]
ZHOU S, GARCIA-PEREZ M, PECHA B, et al Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood[J]. Energy and Fuel, 2013, 27: 1428- 1438
doi: 10.1021/ef3019832
[11]
RANZI E, CUOCI A, FARAVELLI T, et al Chemical kinetics of biomass pyrolysis[J]. Energy and Fuel, 2008, 22: 4292- 4300
doi: 10.1021/ef800551t
[12]
FARAVELLI T, FRASSOLDATI A, MIGLIAVACCA G, et al Detailed kinetic modeling of the thermal degradation of lignins[J]. Biomass and Bioenergy, 2010, 34: 290- 301
doi: 10.1016/j.biombioe.2009.10.018
[13]
YANG H M, APPARIA S, KUDO S, et al Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin[J]. Industrial and Engineering Chemistry Research, 2015, 54 (27): 6855- 6864
doi: 10.1021/acs.iecr.5b01289
[14]
XU Z F, LIN M C Ab initio kinetics for the unimolecular reaction C6H5OH $ \xrightarrow[{\;\;\;\;\;\;\;\;}]{} $ CO+C5H6[J]. Journal of Physical Chemistry A, 2006, 110: 1672- 1677
doi: 10.1021/jp055241d
[15]
ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al Thermochemical properties and decomposition pathways of three isomeric semiquinone radicals[J]. Journal of Physical Chemistry A, 2010, 114: 1098- 1108
doi: 10.1021/jp9091706
[16]
KHACHATRYAN L, ASATRYAN R, MCFERRIN C, et al Radicals from the gas-phase pyrolysis of catechol. 2. comparison of the pyrolysis of catechol and hydroquinone[J]. Journal of Physical Chemistry A, 2010, 114: 10110- 10116
doi: 10.1021/jp1054588
[17]
ALTARAWNEH M, DLUGOGORSKI Z, KENNEDY E M, et al Theoretical study of unimolecular decomposition of catechol[J]. Journal of Physical Chemistry A, 2010, 114: 1060- 1067
doi: 10.1021/jp909025s
[18]
KHACHATRYAN L, ADOUNKPE J, ASATRYAN R, et al Radicals from the gas-phase pyrolysis of catechol: 1. o-semiquinone and ipso-catechol radicals[J]. Journal of Physical Chemistry A, 2010, 114: 2306- 2312
doi: 10.1021/jp908243q
[19]
CUSTODIS V B F, HEMBERGER P, MA Z Q, et al Mechanism of fast pyrolysis of lignin: studying model compounds[J]. Journal of Physical Chemistry B, 2014, 118: 8524- 8531
doi: 10.1021/jp5036579
[20]
ROBICHAUD D J, SCHEER A M, MUKARAKATE C, et al Unimolecular thermal decomposition of dimethoxy benzenes[J]. Journal of Physical Chemistry A, 2014, 140 (23): 234302
doi: 10.1063/1.4879615
[21]
LIU C, ZHANG Y Y, HUANG X L Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Processing Technology, 2014, 123: 159- 165
doi: 10.1016/j.fuproc.2014.01.002
[22]
SCHEER A M, MUKARAKATE C, ROBICHAUD D J, et al Unimolecular thermal decomposition of phenol and d(5)-phenol: direct observation of cyclopentadiene formation via cyclohexadienone[J]. Journal of Physical Chemistry A, 2012, 136 (4): 44309
doi: 10.1063/1.3675902
[23]
YANG H M, FURUTANI Y, KUDO S, et al Experimental investigation of thermal decomposition of dihydroxybenzene isomers: catechol, hydroquinone, and resorcinol[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 321- 329
doi: 10.1016/j.jaap.2016.05.019
[24]
LEDESMA E B, HOANG J N, NGUYEN Q, et al Unimolecular decomposition pathway for the vapor-phase cracking of eugenol, a biomass tar compound[J]. Energy and Fuel, 2013, 27: 6839- 6846
doi: 10.1021/ef401760c
[25]
ASMADI M, KAWAMOTO H, SAKA S Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 76- 87
doi: 10.1016/j.jaap.2011.04.012
[26]
ASMADI M, KAWAMOTO H, SAKA S Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 88- 98
doi: 10.1016/j.jaap.2011.04.011
[27]
CHU S, SUBRAHMANYAM A V, HUBER G W The pyrolysis chemistry of a beta-O-4 type oligomeric lignin model compound[J]. Green Chemistry, 2013, 15: 125- 136
doi: 10.1039/C2GC36332A
[28]
BESTE A, BUCHANAN A C Role of carbon-carbon phenyl migration in the pyrolysis mechanism of beta-O-4 lignin model compounds: phenethyl phenyl ether and alpha-hydroxy phenethyl phenyl ether[J]. Journal of Physical Chemistry A, 2012, 116: 12242- 12248
doi: 10.1021/jp3104694
[29]
NORINAGA K, DEUTSCHMANN O Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons[J]. Industrial and Engineering Chemistry Research, 2007, 46: 3547- 3557
doi: 10.1021/ie061207p
[30]
NORINAGA K, DEUTSCHMANN O, SAEGUSA N, et al Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86: 148- 160
doi: 10.1016/j.jaap.2009.05.001
[31]
NOWAKOWSKA M, HERBINET O, DUFOUR A, et al Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification[J]. Combustion and Flame, 2014, 161: 1474- 1488
doi: 10.1016/j.combustflame.2013.11.024