Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 866-874    DOI: 10.3785/j.issn.1008-973X.2021.05.007
    
Simulation and experimental study of energy-capturing and wave-dissipating floating breakwater with S type blade
Fang-ping HUANG1,2(),Guo-fang GONG1,Can-jun YANG1,2,Hua-yong YANG1
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China
Download: HTML     PDF(1289KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An energy-capturing and wave-dissipating floating breakwater with Savonius type (S type) blade was proposed, in order to promote the intelligent and unattended development of marine aquaculture equipment in open sea area, and to solve the problems of independent energy supply and safety protection?of offshore aquaculture equipment. A two-dimensional wave numerical pool was established, the physical tank test system and the sea test system were built. The hydrodynamic characteristics of the system under different structural parameters were studied by simulation and experiment, and the effects of relative spacing, relative depth of water entry and wave stepness?on the energy capture and wave dissipation performance of the system were analyzed. Results showed that the breakwater system can simultaneously capture energy and eliminate waves, the energy capture performance of the breakwater system increased with the increase of wave steepness, the energy capture effect was the best when the period was 1.6 s, and the wave dissipation performance became better with the increase of relative spacing. The transmission coefficient fluctuated in the range of 0.2~0.8, and the wave dissipation effect was remarkable. In most cases, the energy capture and the wave dissipation performance of the system can not reach the best at the same time. The sea trial operation test verifies the energy capture and wave dissipation effect of the floating breakwater system.



Key wordsfloating breakwater      S type blade      energy-capturing and wave-dissipating      transmission coefficient      hydrodynamic performance     
Received: 24 July 2020      Published: 10 June 2021
CLC:  TK 730.7  
Fund:  国家自然科学基金资助项目(51605431);宁波市重大科技攻关资助项目(2015C110015)
Cite this article:

Fang-ping HUANG,Guo-fang GONG,Can-jun YANG,Hua-yong YANG. Simulation and experimental study of energy-capturing and wave-dissipating floating breakwater with S type blade. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 866-874.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.007     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/866


S型桨叶捕能消波浮式防波堤仿真及试验研究

为了促进开放海域海养殖装备智能化、无人值守化发展,解决离岸养殖装备自主供能以及安全防护问题,针对所提出的Savonius型(S型)桨叶捕能消波式浮式防波堤,建立二维波浪数值水池,搭建物理水槽试验系统和海试系统,通过仿真和试验研究系统在不同结构参数下的水动力学特性,分析探究相对间距、相对入水深度、波陡对系统捕能消波性能的影响. 研究结果表明:该防波堤系统能同时进行捕能和消波,其捕能性能随着波陡的增加而增加,在周期1.6 s时捕能效果最好;消波性能随相对间距的增加而变好,透射系数为0.2~0.8,消波效果显著. 系统捕能与消波性能存在相互影响,多数情况下两者不能同时达到最佳. 海试运行测试验证了该型防波堤的捕能消波效果.


关键词: 浮式防波堤,  S型桨叶,  捕能消波,  透射系数,  水动力性能 
Fig.1 Three dimensional structure of class II S blades
Fig.2 Three-dimensional structure of floating breakwater
参数 数值/m 参数 数值/m
浮管直径 0.33 叶片半径 0.15
浮管间距 0.65 桨叶高 0.61
浮堤长度 3 桨叶间隙 0.3
桨叶直径 0.5 端板直径 0.5
Tab.1 Geometric characteristics of floating breakwater
参数 数值 单位
水深 2 m
吃水深度 1.7 m
HDPE浮体密度 0.95 kg/m3
桨叶排水量 10 kg
桨叶转动惯量 (0.337, 0.337, 0.160) kg·m2
Tab.2 Hydrodynamic parameters of floating breakwater
Fig.3 Grid division of floating breakwater
Fig.4 Simulation experimental model of floating breakwater
Fig.5 Simulation experiment graphs of different relative spacings
Fig.6 Simulation experiment graphs of different relative water entry depths
Fig.7 Simulation experiment graphs of different wave steepness values
Fig.10 Experimental test system of floating breakwater
Fig.8 Schematic diagram of test arrangement for floating breakwater
Fig.9 Physical model of floating breakwater
Fig.11 Testing site of floating breakwater
参数名称 符号 研究变量 单位
入水深度 D 0.70、0.75、0.80 m
堤宽 W 0.6、0.7、0.8 m
波高 h 0.09、0.14、0.19、0.24 m
波长 λ 2.186、2.250、2.377 m
波浪周期 S 1.5、1.6、1.7 s
相对入水深度 D/λ 0.294、0.311、0.316;0.320、0.333、
0.337;0.343、0.356、0.366
?
相对间距 W/λ 0.252、0.267、0.274;0.290、0.311、
0.320;0.356、0.366、0.367
?
波陡 h/λ 0.037、0.04、0.041;0.059、0.062、0.064;0.080、0.084、0.087;0.101、0.107、0.109 ?
Tab.3 Test group data of floating breakwater
Fig.12 Energy-absorbing and wave-elimination graphs with different relative spacing values
Fig.13 Energy-absorbing and wave-elimination graphs with different relative water depths
Fig.14 Energy-absorbing and wave-elimination graphs with different wave steepness values
Fig.15 Sea test breakwater structure
Fig.16 Sea test site of floating breakwater
Fig.17 Energy-absorbing and wave-elimination at sea test site
工况 h /m T /s Ct n /(r·min?1 N /(N·m) P/W
1 0.8 3 0.568 19.3 429.0 867
2 0.8 4 0.613 15.2 573.0 912
3 0.8 5 0.642 11.8 772.0 954
4 1.2 4 0.607 15.8 542.1 897
5 1.2 5 0.707 12.6 775.3 1023
6 1.2 6 0.700 10.2 985.8 1053
7 1.5 4 0.689 15.2 818.6 1303
8 1.5 5 0.664 12.3 1001.5 1290
9 1.8 6 0.687 9.8 1245.3 1278
10 1.8 5 0.651 11.8 1053.7 1302
11 2.2 6 0.708 9.8 1290.2 1324
12 2.2 7 0.753 8.5 1575.4 1414
Tab.4 Sea test data table
Fig.18 Energy-absorbing and wave-elimination graphs of sea test
[1]   SHIH R S, WENG W K, CHOU C R The performance characteristics of inclined highly previous pipe breakwaters[J]. Ocean Engineering, 2015, 100: 54- 66
doi: 10.1016/j.oceaneng.2015.03.015
[2]   WANG H, XU H, LIU P Experimental study on the dissipation characteristics of curtain-type flexible floating breakwater[J]. Journal of Coastal Research, 2015, 73: 410- 414
doi: 10.2112/SI73-072.1
[3]   SYED S A, MANI J S. Performance of multiple pontoons floating breakwater a numerical approach [C]// 6th International Conference on Civil Engineering in the Oceans. Baltimore: American Society of Civil Engineers, 2005: 342-355.
[4]   RAHMAN A, MIAUTANI N, KAWASAKI K Numerical modeling of dynamic responses and mooring forces of submerged floating breakwater[J]. Coastal Engineering, 2006, 53: 799- 815
doi: 10.1016/j.coastaleng.2006.04.001
[5]   王明玉, 吴静萍, 关超, 等 矩形箱柔性膜组合体透射性能的试验研究[J]. 武汉理工大学学报: 交通科学与工程版, 2019, 43 (5): 914- 919
WANG Ming-yu, WU Jing-ping, GUAN Chao, et al Experimental study on transmission performance of rectangular box flexible membrane assembly[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2019, 43 (5): 914- 919
doi: 10.3963/j.issn.2095-3844.2019.05.023
[6]   ATILLA B Experimental study of a sloping float breakwater[J]. Ocean Engineering, 2000, 27: 445- 453
doi: 10.1016/S0029-8018(98)00080-8
[7]   王鹏, 邓争志, 王辰, 等 振荡水柱式防波堤的水动力特性[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2335- 2341
WANG Peng, DENG Zheng-zhi, WANG Chen, et al Hydrodynamic characteristics of oscillating watercolumn type breakwater[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2335- 2341
doi: 10.3785/j.issn.1008-973X.2019.12.010
[8]   姚建均, 李凤甡, 王贤成, 等 Savonius水轮机减流特性数值模拟研究[J]. 哈尔滨工程大学学报, 2020, (6): 1- 8
YAO Jian-jun, LI Feng-shen, WANG Xian-cheng, et al Numerical simulation study of the Savonius turbine on the current reduction characteristics[J]. Journal of Harbin Engineering University, 2020, (6): 1- 8
[9]   姚建均, 李凤甡, 陈俊华, 等 垂直轴阻力型Savonius水轮机发展现状[J]. 哈尔滨工程大学学报, 2019, 41 (2): 298- 308
YAO Jian-jun, LI Feng-shen, CHEN Jun-hua, et al Research on a vertical-axis drag-type Savonius hydrokinetic turbine[J]. Journal of Harbin Engineering University, 2019, 41 (2): 298- 308
[10]   JI C Y, BIAN X Q, CHENG Y, et al Experimental study of hydrodynamic performance for double-row rectangular floating breakwaters with porous plates[J]. Ships and Offshore Structures, 2019, 14 (7): 737- 746
doi: 10.1080/17445302.2018.1558521
[11]   郑仁诗. 风力发电与浮式防波堤一体化概念设计及水动力性能研究[D]. 镇江: 江苏科技大学, 2019.
ZHENG Ren-shi. Design and hydrodynamic performance study of integrated floating breakwater and wind power generation[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
[12]   葛聪. 较长周期波浪条件下新型浮笩式防波堤消浪性能试验研究[D]. 大连: 大连理工大学, 2019.
GE Cong. Experimental study on performance of raft floating breakwater under the action of relatively long period waves[D]. Dalian: Dalian University of Technology, 2019.
[13]   王世明, 李泽宇, 申玉, 等 一种基于海浪发电的浮式消波堤设计与试验研究[J]. 水利水电技术, 2019, 50 (7): 216- 221
WANG Shi-ming, LI Ze-yu, SHEN Yu, et al Design and experimental study of a floating breakout based on wave power generation[J]. Water Resources and Hydropower Engineering, 2019, 50 (7): 216- 221
[14]   卞向前. 新型水轮机式浮式防波堤设计与分析[D]. 镇江: 江苏科技大学, 2019.
BIAN Xiang-qian. Design and analysis of a new type floating breakwater: water turbine floating breakwater[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
[15]   ZHANG Y, LI M, ZHAO X, et al The effect of the coastal reflection on the performance of a floating breakwater-WEC system[J]. Applied Ocean Research, 2020, 100: 1- 9
[16]   QU K, SUN W Y, KRAATZ S, et al Effects of floating breakwater on hydrodynamic load of low-lying bridge deck under impact of cnoidal wave[J]. Ocean Engineering, 2020, 203: 1- 18
[17]   ZHANG H M, DING X C, ZHOU B Z, et al Hydrodynamic performance study of wave energy-type floating breakwater[J]. Journal of Marine Science and Application, 2019, 18 (1): 64- 71
doi: 10.1007/s11804-019-00064-y
[18]   余洁, 陈俊华, 姚建均, 等 新型浮式防波堤水动力性能数值研究[J]. 海洋工程, 2019, 37 (6): 62- 73
YU Jie, CHEN Jun-hua, YAO Jian-jun, et al Numerical research on the hydrodynamic performance of a new-type floating breakwater[J]. The Ocean Engineering, 2019, 37 (6): 62- 73
[19]   鲍灵杰, 彭天好, 黄方平, 等 新型捕能消波浮式防波堤数值模拟与试验研究[J]. 水运工程, 2020, (4): 9- 14
BAO Ling-jie, PENG Tian-hao, HUANG Fang-ping, et al Numerical simulation and experimental study on a new type of energy absorption and wave elimination floating breakwater[J]. Port and Waterway Engineering, 2020, (4): 9- 14
doi: 10.3969/j.issn.1002-4972.2020.04.002
[20]   刘崇期, 陈兵, 胡涛 兼具波浪能转换功能的双浮式防波堤性能研究[J]. 水运工程, 2019, (7): 44- 48
LIU Chong-qi, CHEN Bing, HU Tao, et al Study on performance of double floating breakwater with wave energy conversion function[J]. Port and Waterway Engineering, 2019, (7): 44- 48
doi: 10.3969/j.issn.1002-4972.2019.07.009
[1] Zhi-wen ZHAN,Ling-xin ZHANG,Jian DENG,Xue-ming SHAO. Numerical simulation of acoustic characteristics on DTMB 4119 propeller[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 767-774.
[2] Peng WANG,Zheng-zhi DENG,Chen WANG,Xiang REN. Hydrodynamic characteristics of oscillating water column type breakwater[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2335-2341.
[3] ZHONG Wei,YANG Zhi-qun,SONG Dong-gen,HU Ji-guang ,TONG Shui-guang. Hydrodynamic performance design of the radiation chamber of a waste-heat boiler for copper flash smelting[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1970-1975.
[4] XIN Xiao-peng, SHAO Xue-ming, DENG Jian, LI Wei. Hydrodynamic performance prediction of marine current turbine with
dual rotor in tandem arrangement
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1227-1231.