Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 767-774    DOI: 10.3785/j.issn.1008-973X.2021.04.020
    
Numerical simulation of acoustic characteristics on DTMB 4119 propeller
Zhi-wen ZHAN(),Ling-xin ZHANG*(),Jian DENG,Xue-ming SHAO
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1586KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The hydrodynamic characteristics and non-cavitation noise sound pressure level were calculated considering open-water and wake flow conditions by taking DTMB 4119 propeller as research object. The open-water performance of single propeller was verified under various advance ratios by comparing with the literature experiment results. Then the FW-H analogy equation was introduced to calculate the acoustic pressure of the probes and their spectra. Results showed that the numerical results accorded well with the previous experiments in hydrodynamic performance for different advance ratios. The monopole and dipole noise spectra present marked tonal noise with higher sound pressure level than broadband spectra. Their frequencies corresponded to the blade BPF and its harmonics. The monopole noise presents apparent figure-8 source directivity distributions, and that of the dipole noise presents figure-∞ distributions in the axial plane. The wake field will not change the directivity of total sound pressure level of monopole and dipole, but it will make the sound pressure level of tonal noise in each direction tend to be uniform. The noise directivities of monopole and dipole are no longer obvious in the radial plane.



Key wordsDTMB 4119      hydrodynamic performance      non-cavitation noise      acoustic analogy     
Received: 19 October 2020      Published: 07 May 2021
CLC:  TK 5  
Fund:  国家自然科学基金资助项目(91852204,11772298)
Corresponding Authors: Ling-xin ZHANG     E-mail: zhanzhiwen@zju.edu.cn;zhanglingxin@zju.edu.cn
Cite this article:

Zhi-wen ZHAN,Ling-xin ZHANG,Jian DENG,Xue-ming SHAO. Numerical simulation of acoustic characteristics on DTMB 4119 propeller. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 767-774.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.020     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/767


DTMB 4119螺旋桨噪声特性的数值模拟

将DTMB 4119型螺旋桨作为研究对象,在敞水和伴流条件下分别计算水动力学特性和非空化噪声声压级. 在多个进速系数下对单桨模型的敞水性能展开验证,与文献实验值比对验证准确性后,引入FW-H声类比方程求解监测点声压及频谱. 结果表明,现有模型可以在多个进速系数下取得较吻合的数值结果;单极子和偶极子噪声频谱在低频段出现显著高于宽带的线谱噪声,频率与桨叶BPF及谐波对应. 在轴向平面内,单极子噪声声压级呈现出8字形的分布特征,偶极子噪声声压级呈现出∞型的指向性分布. 伴流场不会改变单、偶极子总声压级的指向性,但会使得各方向线谱噪声声压级趋于均匀. 在径向平面内,单、偶极子的噪声声压级指向性不明显.


关键词: DTMB 4119,  水动力学性能,  非空化噪声,  声类比 
Fig.1 Schematic diagram of calculation domain layout for suboff and propeller model
Fig.2 Schematic diagram of longitudinal section grid
工况 kt 10 kq
实验值 0.1487 0.280
网格A 0.1370 0.278
网格B 0.1372 0.280
网格C 0.1386 0.280
网格D 0.1386 0.280
Tab.1 Verification of mesh independence for single blade model
Fig.3 A and B probes location distribution
Fig.4 Open water performance verification for DTMB 4119 model
Fig.5 Pressure coefficient distribution comparison on r=0.7R line for DTMB 4119 model
Fig.6 Comparison of probe’s noise sound pressure level spectrum for single blade model in open-water condition with literature [7]
Fig.7 Dipole noise sound pressure level spectra of four type A probes for blade in open-water condition
Fig.8 Monopole noise sound pressure level spectra of four type A probes for blade in open-water condition
Fig.9 Monopole and dipole total sound pressure level directivities for blade in axial plane under open-water condition
Fig.10 Monopole and dipole total sound pressure level directivities for blade in radial plane under open-water condition
监测点 LpM /dB LpD /dB
A0 16.01 139.59
A3 87.03 138.43
A6 100.72 133.86
A9 105.33 106.73
Tab.2 Noise components of some typical probes in axial plane under open-water condition
Fig.11 Pressure coefficient distribution diagram on upper surface in longitudinal section for single suboff model
工况 Fd /N E /%
实验值 102.30 ?
DES $k {\text{-} } \omega ,\;$ y+=60 105.40 +3.03
RANS $k {\text{-} } \omega,\;$ y+=60 105.63 +3.26
RANS $k {\text{-} } \varepsilon,\;$ y+=60 105.57 +3.20
Tab.3 Comparison of suboff drag calculated by different turbulence models and grids
Fig.12 Non-dimensional velocity distribution in x direction of circular section of disk surface with angle
Fig.13 Dipole noise sound pressure level spectra of four type A probes for blade in suboff wake flow
Fig.14 Excitation force on propeller in axial direction and radius direction under open-water condition and suboff wake flow
Fig.15 Monopole noise sound pressure level spectra of four type A probes for blade in suboff wake flow
Fig.16 Monopole and dipole total sound pressure level directivities for blade in axial plane under suboff wake flow
监测点 LpM /dB LpD /dB
A0 13.64 140.33
A3 86.94 139.21
A6 101.76 134.75
A9 105.07 110.45
Tab.4 Noise components of some probes in axial plane within wake flow
[1]   LIGHTHILL M J On sound generated aerodynamically. I. general theory[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1952, 211 (1107): 564- 587
[2]   CURLE N The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955, 231 (1187): 505- 514
[3]   WILLIAMS J E F, HAWKINGS D L Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969, 264 (1151): 321- 342
doi: 10.1098/rsta.1969.0031
[4]   GORJI M, GHASSEMI H, MOHAMADI J Calculation of sound pressure level of marine propeller in low frequency[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37 (1): 60- 73
doi: 10.1177/1461348418757884
[5]   魏应三, 王永生, 杨琼方, 等 单叶片桨噪声相移叠加法预报多叶片船舶螺旋桨非空化低频噪声[J]. 声学学报, 2016, 41 (3): 390- 397
WEI Ying-san, WANG Yong-sheng, YANG Qiong-fang, et al Prediction of propeller non-cavitation noise by superimposing shifted sound signal from an isolated blade[J]. Acta Acoustica, 2016, 41 (3): 390- 397
[6]   侯知音, 王超, 白雪夫 基于CFD的对转桨无空泡噪声的仿真预报[J]. 船海工程, 2015, 44 (4): 37- 40
HOU Zhi-yin, WANG Chao, BAI Xue-fu Noise characteristics without cavitation prediction simulation of contra-rotating propeller based on CFD[J]. Ship and Ocean Engineering, 2015, 44 (4): 37- 40
doi: 10.3963/j.issn.1671-7953.2015.04.010
[7]   龚京风, 张文平, 明平剑, 等 螺旋桨低频流噪声模拟方法研究[J]. 中国舰船研究, 2012, 7 (5): 14- 21
GONG Jing-feng, ZHANG Wen-ping, MING Ping-jian, et al Numerical analysis of the propeller low frequency flow-noise[J]. Chinese Journal of Ship Research, 2012, 7 (5): 14- 21
[8]   SUN Y, LIU W, LI T Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct[J]. Ocean Engineering, 2019, 191: 106489
doi: 10.1016/j.oceaneng.2019.106489
[9]   PAN Y, ZHANG H, ZHOU Q Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11 (2): 899- 913
doi: 10.1016/j.ijnaoe.2019.04.002
[10]   ?ZDEN M C, GüRKAN A Y, ?ZDEN Y A, et al Underwater radiated noise prediction for a submarine propeller in different flow conditions[J]. Ocean Engineering, 2016, 126: 488- 500
doi: 10.1016/j.oceaneng.2016.06.012
[11]   CARLTON J S. Marine propellers and propulsion [M]. [S.l.]: Butterworth-Heinemann, Elsevier, 2012.
[12]   LIU H, HUANG T T. Summary of DARPA SUBOFF experimental program data [R]. West Bethesda: Naval Surface Warfare Center, Carderock Division (NSWCCD), 1998.
[13]   EBRAHIMI A, SEIF M S, NOURI-BORUJERDI A Hydrodynamic and acoustic performance analysis of marine propellers by combination of panel method and FW-H equations[J]. Mathematical and Computational Applications, 2019, 24 (3): 81
doi: 10.3390/mca24030081
[14]   FELICE F D, FELLI M, LIEFVENDAHI M, el al. Numerical and experimental analysis of the wake behavior of a generic submarine propeller [C]// 1st International Symposium on Marine Propulsors. Trondheim, Norway: MARINTEK, 2009.
[15]   曾赛, 杜选民, 范威, 等 对转桨和单桨空泡水筒噪声测量对比试验研究[J]. 船舶力学, 2018, 22 (7): 896- 907
ZENG Sai, DU Xuan-min, FAN Wei, et al Measurement and comparison analysis of the noise for counter-rotation propeller and single propeller tested in cavitation tunnel[J]. Journal of Ship Mechanics, 2018, 22 (7): 896- 907
doi: 10.3969/j.issn.1007-7294.2018.07.014
[16]   曾赛. 对转桨无空泡线谱噪声数值模拟与实验研究[D]. 北京: 中国舰船研究院, 2015.
ZENG Sai. Numerical simulation and experimental study of non-cavitation line-spectrum noise of underwater counter-rotation propeller [D]. Beijing: China Ship Research Institute, 2015.
[17]   BAGHERI M R, SEIF M S, MEHDIGHOLI H, et al Analysis of hydrodynamics and noise prediction of the marine propellers under cavitating and non-cavitating conditions[J]. Scientia Iranica. Transaction B, Mechanical Engineering, 2015, 22 (5): 1918
[18]   MOUSAVI B, RAHROVI A, KHERADMAND S Numerical simulation of tonal and broadband hydrodynamic noises of non-cavitating underwater propeller[J]. Polish Maritime Research, 2014, 21 (3): 46- 53
doi: 10.2478/pomr-2014-0029
[19]   孙瑜. 舰艇推进器若干降噪措施及其效果研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
SUN Yu. Research on some noise-reduction measures and their effects of marine propulsions [D]. Harbin: Harbin Engineering University, 2017.
[20]   JESSUP S D. An experimental investigation of viscous aspects of propeller blade flow [D]. Washington D.C. : The Catholic University of America, 1989.
[21]   朱锡清, 李亚, 孙红星 船舶螺旋桨叶片与艉部湍流场互作用噪声的预报研究[J]. 声学技术, 2006, 25 (4): 361- 364
ZHU Xi-qing, LI Ya, SUN Hong-xing Prediction of noise induced by interaction between turbulent flow and propeller blades[J]. Technical Acoustics, 2006, 25 (4): 361- 364
doi: 10.3969/j.issn.1000-3630.2006.04.019
[1] Fang-ping HUANG,Guo-fang GONG,Can-jun YANG,Hua-yong YANG. Simulation and experimental study of energy-capturing and wave-dissipating floating breakwater with S type blade[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 866-874.
[2] ZHONG Wei,YANG Zhi-qun,SONG Dong-gen,HU Ji-guang ,TONG Shui-guang. Hydrodynamic performance design of the radiation chamber of a waste-heat boiler for copper flash smelting[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1970-1975.
[3] XIN Xiao-peng, SHAO Xue-ming, DENG Jian, LI Wei. Hydrodynamic performance prediction of marine current turbine with
dual rotor in tandem arrangement
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1227-1231.