Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 831-842    DOI: 10.3785/j.issn.1008-973X.2021.05.004
    
Telerobotic shared control strategy based on telepresence: a review
Ying-long CHEN1,2(),Fu-jun SONG1,Jun-hao ZHANG1,2,Wei SONG3,Yong-jun GONG1,2,*()
1. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
2. Key Laboratory of Rescue and Salvage Engineering Liaoning Province, Dalian Maritime University, Dalian 116026, China
3. Institute of Marine Electronics and Robotics, Zhejiang University, Zhoushan 316021, China
Download: HTML     PDF(887KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The shared control strategy, as the main control mode of teleoperation robots based on telepresence, can make full use of the operator's perception, judgment and decision-making ability, and utilize to the robot's own unique advantages. The telerobotic telepresence technology was introduced. The development of teleoperation shared control strategy was summarized. The principles of each control strategy were introduced mainly based on tactile feedback guidance, kinematic constraint avoidance and sharing factor assignment. The bottlenecks and shortcomings in the development of telerobotic shared control strategy were analyzed, such as the singleness or rigidity of shared factors, time delay and limited autonomous judgment ability of robots. The future research trends were proposed from three aspects in view of the limitations of the current study, namely, improving the intervention level, strengthening robot intention prediction, and combining machine learning, which have a certain guiding significance.



Key wordsteleoperation      shared control      telepresence technology      control strategy      shared factor      tactile feedback     
Received: 02 November 2020      Published: 10 June 2021
CLC:  TH 11  
Fund:  国家自然科学基金资助项目(51705452,51905067,U1908228);工业和信息化部高科技船舶资助项目(2018ZX04001-021);大连市科技创新基金重点学科重大资助项目(2020JJ25CY016)
Corresponding Authors: Yong-jun GONG     E-mail: chenyinglong@dlmu.edu.cn;yongjungong@163.com
Cite this article:

Ying-long CHEN,Fu-jun SONG,Jun-hao ZHANG,Wei SONG,Yong-jun GONG. Telerobotic shared control strategy based on telepresence: a review. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 831-842.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.004     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/831


基于临场感的遥操作机器人共享控制研究综述

共享控制策略作为基于临场感的遥操作机器人的主要控制模式,能够充分利用操作者的感知、判断和决策能力,也能发挥出机器人自身的优势. 阐述遥操作机器人临场感技术;综述遥操作共享控制策略的发展现状,主要基于触觉反馈引导、运动学限制规避以及共享因子分配等,对各控制策略的原理进行介绍,并梳理和分析遥操作共享控制策略发展中的瓶颈和不足,如共享因素的单一化或僵硬化、时延问题和机器人自主判断能力有限等问题. 针对研究存在的局限性,从3个方面对未来的发展提出展望,分别为提升干预水平、加强机器人意图预测、结合机器学习, 具有一定的指导意义.


关键词: 遥操作,  共享控制,  临场感技术,  控制策略,  共享因子,  触觉反馈 
Fig.1 Common force feedback devices
Fig.2 Overview of teleoperation techniques
Fig.3 Control mode of teleoperation robot
Fig.4 Shared control framework based on presence
文献 应用场景 TFG KAC SFA 研究特点
[55] 轨迹规划 * 权重由操作者当前输入动作和目标物体的距离决定
[56] 椎弓根螺钉固定手术 * * 外科医生可以直接控制攻丝轴上的相互作用力/扭矩,而不会降低其他方向上的位置精度
[57] 远程操作热线工作 * * 操作者和自主运动规划器共同生成笛卡尔任务轨迹
[58] 复杂环境避障、导航 * * 考虑机器人与障碍物之间的距离,从而分别确定柔性控制器和导航控制器合适的合作权值
[59] 核电站高位重水更换 * 操作员仅控制从属机器人,而抑振任务分配给机器人系统
[60] 微创手术(MIS) * 外科医生全程控制工具的位置,并得到系统的支持,即外科医生感觉到力,但同时不阻碍或影响手术过程
[61] 六足机器人爬梯 * * 操作者和自主控制器的命令交由共享控制器中的控制权重函数进行处理
[62] 机器人避障 * * 以稳定裕度与稳定裕度变化率为输入,共享因子为输出的模糊控制器,实现变权重共享控制
[63] 空间远程操作 * * 根据操作员和自主控制模块的作用大小取加权融合
[64] 双臂协同 * * 2名操作者通过优势因子调节各操作者的控制权重
[65] 无人机飞行任务 * * 融合人主动操作和机器人自主运动的共享控制策略,使得机器人的控制权限可以在人和机器人之间平滑转移
[66] 辅助避障 * * 人的权重和机器人的权重是分别受不同因素影响的
[67] 动态工作空间搬运 * 分别研究共享控制中提高机器人自主运动能力和辅助操作者提高操作能力的方法
[68] ATRV机器人 * * 遥操作系统允许人类扩展他们的物理能力,使他们能够干预危险操作或在他们不可能存在的地方
[69] QBot机器人移动 * * 同时考虑机器人的自主性和人的干预,通过阻抗和导纳模型保证从人的操作到机器人运动的无源性
[70] 手术教学引导 * * 外科医生之间共享的控制权限是根据他们相对水平的手术技能和经验来选择的
[71] 非结构环境的探索 * * * 不仅根据给定环境上下文,而且根据用户当前行为的上下文来调节共享控制器提供的辅助水平
[72] 自由飞行太空机器人(FFSR) * * 将地面操作员的决策能力与空间机器人的自主能力有效地结合起来实现对目标更有效的捕获
[73] 微创外科手术(RMIS) * * 人工势场结合虚拟代理点,限制机器人执行机构的运动
Tab.1 Brief summary of research on shared control strategy
Fig.5 System of haptic feedback shared control strategy
[1]   SHERIDANT B. Tele-robotics, automation, and human supervisory control [M]. Massachusetts: the MIT Press, 1992.
[2]   SHEN J, IBANEZ-GUZMAN J, NG T C, et al. A collaborative-shared control system with safe obstacle avoidance capability [C]// IEEE Conference on Robotics. Singapore: IEEE, 2004: 119-123.
[3]   GAO M, OBERLANDER J, SCHAMM T, et al. Contextual task-aware shared autonomy for assistive mobile robot teleoperation [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 3311-3318.
[4]   YU N, WANG K, LIU J. Dexterous haptic interaction for functional rehabilitation and assessment of the upper limb [C]// IEEE International Conference on Robotics and Biomimetics. Bali: IEEE, 2015: 1351-1355.
[5]   HIRCHE S, BUSS M Human-oriented control for haptic teleoperation[J]. Proceedings of the IEEE, 2012, 100 (3): 623- 647
doi: 10.1109/JPROC.2011.2175150
[6]   GOERTZ R C, THOMPSON W M Electronically controlled manipulator[J]. Nucleonics, 1954, 12 (11): 401- 462
[7]   RAIMONDI T. Remote handling in the joint european torus (JET) fusion experiment [C]// Proceedings of 24th Conference on Remote Systems Technology. Washington: IEEE, 1976: 188-195.
[8]   李海超. 焊接遥操作机器人系统及人机协作控制策略的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.
LI Hai-chao. Research on welding teleoperation robot system and man-machine cooperative control strategy [D]. Harbin: Harbin Institute of Technology, 2006.
[9]   CHUNG G B, KIM S, LEE S G, et al An image-guided robotic surgery system for spinal fusion[J]. International Journal of Control Automation and Systems, 2006, 4 (1): 30- 41
[10]   YOERGER D, SLOTINE J J. Supervisory control architecture for underwater teleoperation [C]// IEEE International Conference on Robotics and Automation. Raleigh: IEEE, 1987: 2068-2073.
[11]   WENG C Y, YUAN Q, SUAREZ-RUIZ F, et al A Telemanipulation-based human-robot collaboration method to teach aerospace masking skills[J]. IEEE Transactions on Industrial Informatics, 2020, 16 (5): 3076- 3084
doi: 10.1109/TII.2019.2906063
[12]   XIAO J, WANG P, LU H, et al A three-dimensional mapping and virtual reality-based human: robot interaction for collaborative space exploration[J]. International Journal of Advanced Robotic Systems, 2020, 17 (3): 172988142092529
[13]   KABER D B, RILEY J M, ZHOU R, et al Effects of visual interface design, and control mode and latency on performance, telepresence and workload in a teleoperation task[J]. Human Factors and Ergonomics Society Annual Meeting Proceedings, 2000, 44 (5): 503- 506
doi: 10.1177/154193120004400505
[14]   KIM W S, HANNAFORD B Force-reflection and shared compliant control in operating telemanipulators with time delay[J]. IEEE Transactions on Robotics and Automation, 1992, 8 (2): 176- 185
doi: 10.1109/70.134272
[15]   熊鹏文, 林虹, 宋爱国, 等 基于随机森林回归的手臂末端力的软测量方法[J]. 仪器仪表学报, 2017, 38 (10): 2400- 2406
XIONG Peng-wen, LIN Hong, SONG Ai-guo, et al Soft measurement method of end-of-arm force based on random forest regression[J]. Chinese Journal of Scientific Instrument, 2017, 38 (10): 2400- 2406
doi: 10.3969/j.issn.0254-3087.2017.10.006
[16]   SINGH H, SINGH J Human eye tracking and related issues: a review[J]. International Journal of Scientific and Research Publications, 2012, 2 (9): 1- 9
[17]   YU N, WANG K, LI Y, et al. A haptic shared control algorithm for flexible human assistance to semi-autonomous robots [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 5241-5246.
[18]   EZEH C, TRAUTMAN P, HOLLOWAY C, et al. Comparing shared control approaches for alternative interfaces: awheelchair simulator experiment [C] //IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff: IEEE, 2017: 93-98.
[19]   MILLIKEN L, HOLLINGER G A. Modeling user expertise for choosing levels of shared autonomy [C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 2285-2291.
[20]   戴廷飞, 刘邈, 叶阳阳, 等 人机共享控制机器人系统的应用与发展[J]. 仪器仪表学报, 2019, 40 (3): 62- 73
DAI Ting-fei, LIU Miao, YE Yang-yang, et al Application and development of man-machine shared control robot system[J]. Chinese Journal of Scientific Instrument, 2019, 40 (3): 62- 73
[21]   YAMADA H, MUTO T Development of a hydraulic tele-operated construction robot using virtual reality (new master-slave control method and an evaluation of a visual feedback system)[J]. International Journal of Fluid Power, 2003, 4 (2): 35- 42
doi: 10.1080/14399776.2003.10781164
[22]   HOKAYEM P F, SPONG M W Bilateral teleoperation: an historical survey[J]. Automatica, 2006, 42 (12): 2035- 2057
doi: 10.1016/j.automatica.2006.06.027
[23]   宋爱国 力觉临场感遥操作机器人(1): 技术发展与现状[J]. 南京信息工程大学学报: 自然科学版, 2013, 5 (1): 1- 19
SONG Ai-guo Telepresence robot (1): technology development and status quo[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2013, 5 (1): 1- 19
[24]   宋爱国, 柯欣, 潘礼正 力觉临场感遥操作机器人(2): 操作者的输入输出特性建模[J]. 南京信息工程大学学报, 2013, 5 (2): 97- 105
SONG Ai-guo, KE Xin, PAN Li-zheng Force-sensing telepresence robot (2): modeling of operator input/output characteristics[J]. Journal of Nanjing University of Information Science and Technology, 2013, 5 (2): 97- 105
doi: 10.3969/j.issn.1674-7070.2013.02.001
[25]   宋爱国, 马俊青 力觉临场感遥操作机器人(3): 环境的动力学描述[J]. 南京信息工程大学学报, 2014, (2): 113- 120
SONG Ai-guo, MA Jun-qing Force telepresence robot (3): dynamic description of environment[J]. Journal of Nanjing University of Information Science and Technology, 2014, (2): 113- 120
doi: 10.3969/j.issn.1674-7070.2014.02.002
[26]   宋爱国, 倪得晶 力觉临场感遥操作机器人(4): 系统的操作性能评价[J]. 南京信息工程大学学报: 自然科学版, 2014, (3): 211- 220
SONG Ai-guo, NI De-jing Teleoperation robot with force telepresence (4): evaluation of system operation performance[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2014, (3): 211- 220
doi: 10.3969/j.issn.1674-7070.2014.03.002
[27]   李杨. 带力觉反馈的主从式遥操作系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
LI Yang. Research on master-slave teleoperating system with force feedback [D]. Harbin: Harbin Institute of Technology, 2019.
[28]   YAMADA H, SUGIMOTO H, MUTO T, et al. Construction tele-robotic system with virtual reality cg presentation of virtual robot and task object using stereo vision system [C]// JFPS International Symposium on Fluid Power. Gifu: The Japan Fluid Power System Society, 2002(5), 831-836.
[29]   SUN F, ZHANG W, CHEN J, et al Fused fuzzy petri nets: a shared control method for brain–computer interface systems[J]. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11 (2): 188- 199
doi: 10.1109/TCDS.2018.2818173
[30]   PREUSCHE C, HIRZINGER G Haptics in tele-robotics: current and future research and applications[J]. The Visual Computer, 2007, 23 (4): 273- 284
doi: 10.1007/s00371-007-0101-3
[31]   CHOPRA N, SPONG M W, LOZANO R Synchronization of bilateral teleoperators with time delay[J]. Automatica, 2008, 44 (8): 2142- 2148
doi: 10.1016/j.automatica.2007.12.002
[32]   TANWANI A K, CALINON S. A generative model for intention recognition and manipulation assistance in teleoperation [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 43-50.
[33]   LIANG J, YU G, GUO L L. Human-robot collaborative semi-autonomous teleoperation with force feedback [C]// 5th International Conference on Soft Computing and Machine Intelligence. Nairobi: IEEE, 2018:129-134.
[34]   王泓澈, 侯敬巍 遥操作机器人虚拟现实系统研究[J]. 机电信息, 2016, (24): 28- 29
WANG Hong-che, HOU Jing-wei Research on virtual reality system of teleoperated robot[J]. Mechanical and Electrical Information, 2016, (24): 28- 29
doi: 10.3969/j.issn.1671-0797.2016.24.017
[35]   应旻. 基于力反馈预测的遥操作双边控制技术研究[D]. 北京: 北京邮电大学, 2014.
YING Min. Research on teleoperation bilateral control technology based on force feedback prediction [D]. Beijing: Beijing University of Posts and Telecommunications, 2014.
[36]   张建军, 吴中华, 刘群坡, 等 主从机械手遥操作双边自适应阻抗控制策略[J]. 上海交通大学学报, 2020, 54 (6): 615- 623
ZHANG Jian-jun, WU Zhong-hua, LIU Qun-po, et al A two-sided adaptive impedance control strategy for master and slave manipulator teleoperation[J]. Journal of Shanghai Jiaotong University, 2020, 54 (6): 615- 623
[37]   李铁军, 董跃巍, 杨冬 协作机器人遥操作运动学映射与导纳控制策略研究[J]. 机械设计与制造, 2020, (3): 258- 260
LI Tie-jun, DONG Yue-wei, YANG Dong Kinematic mapping and admittance control strategy for collaborative robot teleoperation[J]. Machinery Design and Manufacture, 2020, (3): 258- 260
doi: 10.3969/j.issn.1001-3997.2020.03.062
[38]   KUAN C P, YOUNG K Y VR-based teleoperation for robot compliance control[J]. Journal of Intelligent and Robotic Systems, 2001, 30 (4): 377- 398
doi: 10.1023/A:1011136822422
[39]   SHERMAN W R, CRAIG A B Understanding virtual reality[J]. Journal of Documentation, 2003, 59 (4): 483- 486
doi: 10.1108/00220410310485776
[40]   张韬. 基于虚拟夹具的力反馈遥操作技术研究[D]. 北京: 北京邮电大学, 2014.
ZHANG Tao. Research on force feedback teleoperation technology based on virtual fixture [D]. Beijing: Beijing University of Posts and Telecommunications, 2014.
[41]   BOWYER S A, DAVIES B L, RODRIGUEZ Y B Active constraints/virtual fixtures: a survey[J]. IEEE Transactions on Robotics, 2014, 30 (1): 138- 157
doi: 10.1109/TRO.2013.2283410
[42]   BETTINI A, MARAYONG P, LANG S, et al Vision-assisted control for manipulation using virtual fixtures[J]. IEEE Transactions on Robotics, 2004, 20 (6): 953- 966
doi: 10.1109/TRO.2004.829483
[43]   PRADA R, PAYANDEH S On study of design and implementation of virtual fixtures[J]. Virtual Reality, 2009, 13 (2): 117- 129
doi: 10.1007/s10055-009-0115-4
[44]   KOSARI S N, LENDVAY T S, HANNAFORD B, et al Forbidden region virtual fixtures from streaming point clouds[J]. Advanced Robotics, 2014, 28 (22): 1507- 1518
doi: 10.1080/01691864.2014.962613
[45]   ROSENBERG L B. Virtual fifixtures: perceptual tools for telerobotic manipulation [C]// IEEE Virtual Reality Conference. Piscataway, New York: IEEE, 1993: 76-82.
[46]   李骁鹏. 有力觉引导的虚拟现实辅助遥操作机器人系统研究[D]. 长春: 吉林大学, 2014.
LI Xiao-peng. Research on virtual reality assisted teleoperation robot system guided by strong sense [D]. Changchun: Jilin University, 2014.
[47]   SHERIDAN T B Space teleoperation through time delay: review and prognosis[J]. IEEE Transactions on Robotics and Automation, 1993, 9 (5): 592- 606
doi: 10.1109/70.258052
[48]   李华忠, 杨维萍, 柳长安 基于虚拟现实的空间机器人共享控制系统及其仿真[J]. 宇航学报, 2000, 21 (3): 100- 105
LI Hua-zhong, YANG Wei-ping, LIU Chang-an Space robot shared control system based on virtual reality and its simulation[J]. Journal of Astronautics, 2000, 21 (3): 100- 105
doi: 10.3321/j.issn:1000-1328.2000.03.017
[49]   SIROUSPOUR S Modeling and control of cooperative teleoperation systems[J]. IEEE Transactions on Robotics, 2005, 21 (6): 1220- 1225
doi: 10.1109/TRO.2005.852254
[50]   尤波, 李东洁, 邱江艳. 多控制方式适时切换遥机器人控制系统 [C]// 全国高等学校制造自动化研究会第十三届学术年会. 哈尔滨: [s.l.], 2008.
YOU Bo, LI Dong-jie, QIU Jiang-yan. Multi-control mode timely switching remote robot control system [C]// The 13th Annual Conference of Manufacturing Automation Research Society of National Universities. Harbin: [s.l.], 2008.
[51]   LI H, LIANG Y, HE T, et al. Real-time shared control of space robot teleoperation without time delay [C]// Control and Decision Conference. Taiyuan: IEEE, 2012.
[52]   孙华, 吴林, 李海超 基于共享控制的遥控焊接机器人系统[J]. 机器人, 2003, 25 (Suppl. 1): 677- 679
SUN Hua, WU Lin, LI Hai-chao Remote control welding robot system based on shared control[J]. Robot, 2003, 25 (Suppl. 1): 677- 679
[53]   高胜, 赵杰 基于人机合作的遥操作机器人系统控制模型[J]. 哈尔滨工业大学学报, 2006, (3): 447- 451
GAO Sheng, ZHAO Jie Control model of teleoperation robot system based on man-machine cooperation[J]. Journal of Harbin Institute of Technology, 2006, (3): 447- 451
doi: 10.3321/j.issn:0367-6234.2006.03.033
[54]   王兴华, 田宇 一种基于行为的自主/遥控水下机器人共享控制方法[J]. 舰船科学技术, 2020, 42 (1): 95- 100
WANG Xing-hua, TIAN Yu A behavior-based shared control method for autonomous/remote-controlled underwater robots[J]. Ship Science and Technology, 2020, 42 (1): 95- 100
doi: 10.3404/j.issn.1672-7649.2020.01.019
[55]   ZHU Y, YANG C, WEI Q, et al Human-robot shared control for humanoid manipulator trajectory planning[J]. Industrial Robot: the International Journal of Robotics Research and Application, 2020, 47 (3): 395- 407
doi: 10.1108/IR-10-2019-0217
[56]   LAURETTI C, CORDELLA F, TAMANTINI C, et al A surgeon-robot shared control for ergonomic pedicle screw fixation[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 2554- 2561
doi: 10.1109/LRA.2020.2972892
[57]   CHEN J, BI S, XI N. A shared control scheme for teleoperation of hot line work robots [C]// 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur: IEEE, 2018.
[58]   JIANG S Y, LIN C Y, HUANG K T, et al Shared control design of a walking-assistant robot[J]. IEEE Transactions on Control Systems Technology, 2017, 25 (6): 2143- 2150
doi: 10.1109/TCST.2016.2638879
[59]   SHIN H, JUNG S H, CHOI Y R, et al Development of a shared remote-control robot for aerial work in NPPs[J]. Nuclear Engineering and Technology, 2018, 50 (4): 613- 618
doi: 10.1016/j.net.2018.03.006
[60]   FRACCZAK L, SZANIEWSKI M, PODSEDKOWSKI L Share control of surgery robot master manipulator guiding tool along the standard path[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15 (3): 1- 10
[61]   尤波, 陈翰南, 李佳钰, 等 一种基于变权重的六足机器人共享遥操作控制[J]. 仪器仪表学报, 2019, 40 (8): 239- 250
YOU Bo, CHEN Han-nan, LI Jia-yu, et al A shared teleoperation control of hexapod robot based on variable weight[J]. Chinese Journal of Scientific Instrument, 2019, 40 (8): 239- 250
[62]   刘爽, 朱国栋 基于操作者表现的机器人遥操作方法[J]. 机器人, 2018, 40 (4): 150- 160
LIU Shuang, ZHU Guo-dong Robot teleoperation based on operator performance[J]. Robot, 2018, 40 (4): 150- 160
[63]   李滋堤, 孙富春, 刘华平, 等 基于人工势场的空间遥操作共享控制[J]. 清华大学学报: 自然科学版, 2010, 50 (10): 1728- 1732
LI Zi-ti, SUN Fu-chun, LIU Hua-ping, et al Space remote operation shared control based on artificial potential field[J]. Journal of Tsinghua University: Science and Technology, 2010, 50 (10): 1728- 1732
[64]   孙雷, 王孙安, 张进华, 等 移动服务机器人共享控制研究[J]. 陕西科技大学学报: 自然科学版, 2015, 33 (1): 169- 174
SUN Lei, WANG Sun-an, ZHANG Jin-hua, et al Research on shared control of mobile service robots[J]. Journal of Shaanxi University of Science and Technology, 2015, 33 (1): 169- 174
[65]   于宁波, 李思宜, 赵营泉, 等 基于共享控制的人机灵巧力触觉交互系统设计与实现[J]. 仪器仪表学报, 2017, 38 (3): 602- 611
YU Ning-bo, LI Si-yi, ZHAO Ying-quan, et al Design and implementation of human-computer dexterity force tactile interaction system based on shared control[J]. Chinese Journal of Scientific Instrument, 2017, 38 (3): 602- 611
doi: 10.3969/j.issn.0254-3087.2017.03.012
[66]   李奕彤. 智能助行机器人的实时避障与共享控制研究[D]. 武汉: 华中科技大学, 2016.
LI Yi-tong. Research on real-time obstacle avoidance and shared control of intelligent walking robot [D]. Wuhan: Huazhong University of Science and Technology, 2016.
[67]   于振中. 移动操作机器人及其共享控制的力反馈遥操作研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
YU Zhen-zhong. Research on force feedback teleoperation of mobile manipulator and its shared control [D]. Harbin: Harbin Institute of Technology, 2010.
[68]   SHEN J, IBANEZ-GUZMAN J, NG T C, et al. A collaborative-shared control system with safe obstacle avoidance capability [C]// IEEE Conference on Robotics. Singapore: IEEE, 2004: 119-123.
[69]   YU N, WANG K, LI Y, et al. A haptic shared control approach to teleoperation of mobile robots [C]// IEEE International Conference on Cyber Technology in Automation. Shenyang: IEEE, 2015: 31-35.
[70]   NUDEHI S S, MUKHERJEE R, GHODOUSSI M A shared-control approach to haptic interface design for minimally invasive telesurgical training[J]. IEEE Transactions on Control Systems Technology, 2005, 13 (4): 588- 592
doi: 10.1109/TCST.2004.843131
[71]   CARLSON T, LEEB R, CHAVARRIAGA R, et al. Online modulation of the level of assistance in shared control systems [C]// IEEE International Conference on Systems. Seoul: IEEE, 2012: 3339-3344.
[72]   DONGLI W, HUAPING L, FUCHUN S, et al. Shared control teleoperation for targets acquisition [C]// Control and Decision Conference. Taiyuan: IEEE, 2012: 3649-3654.
[73]   梁科, 王树新, 李建民, 等 基于虚拟夹具的微创外科手术机器人运动约束研究[J]. 天津大学学报, 2020, 53 (4): 331- 340
LIANG Ke, WANG Shu-xin, LI Jian-min, et al Research on motion constraint of minimally invasive surgical robot based on virtual fixture[J]. Journal of Tianjin University, 2020, 53 (4): 331- 340
[74]   GOODRICH K H, SCHUTTE P C, FLEMISCH F O, et al. Application of the H-mode, a design and interaction concept for highly automated vehicles, to aircraft [C]// 2006 IEEE/AIAA 25th Digital Avionics Systems Conference. Portsmouth: IEEE, 2007: 1018-1031.
[75]   STEELE M, GILLESPIE R B Shared control between human and machine: using a haptic steering wheel to aid in land vehicle guidance[J]. Human Factors and Ergonomics Society Annual Meeting Proceedings, 2001, 45 (23): 1671- 1675
doi: 10.1177/154193120104502323
[76]   O'MALLEY M K, GUPTA A, GEN M, et al Shared control in haptic systems for performance enhancement and training[J]. Journal of Dynamic Systems Measurement and Control, 2006, 128 (1): 75- 85
doi: 10.1115/1.2168160
[77]   ABI-FARRAJ F, PACCHIEROTTI C, ARENZ O, et al A haptic shared-control architecture for guided multi-target robotic grasping[J]. IEEE Transactions on Haptics, 2019, 13 (2): 270- 285
[78]   SELVAGGIO M, AMIR M G E, MOCCIA R, et al. Haptic-guided shared control for needle grasping optimization in minimally invasive robotic surgery [C]// 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau: IEEE, 2019: 3617-3623.
[79]   MARIO S, FIRAS A F, CLAUDIO P, et al Haptic-based shared-control methods for a dual-arm system[J]. IEEE Robotics and Automation Letters, 2018, 4 (3): 4249- 4256
[80]   SHAFIQUL I, PETER X, ABDULMOTALEB E S, et al Artificial and virtual impedance interaction force reflection based bilateral shared control for miniature unmanned aerial vehicle[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (1): 329- 337
doi: 10.1109/TIE.2018.2793178
[81]   KOBAYASHI Y, MOREIRA P, LIU C, et al Haptic feedback control in medical robots through fractional viscoelastic tissue model[J]. Haptic Feedback Cont, 2011, (4): 6704- 6708
[82]   唐宇存, 张建法, 武帅, 等 基于虚拟夹具的手术机器人导纳控制安全策略[J]. 机器人, 2019, 41 (6): 842- 848
TANG Yu-cun, ZHANG Jian-fa, WU Shuai, et al Safety strategy for admittance control of surgical robot based on virtual fixture[J]. Robot, 2019, 41 (6): 842- 848
[83]   PRUKS V, LEE K H, RYU J H. Shared teleoperation for nuclear plant robotics using interactive virtual guidance generation and shared autonomy approaches [C]// 15th International Conference on Ubiquitous Robots (UR). ? Honolulu: IEEE, 2018: 91-95.
[84]   XIONG L, CHNG C B, CHUI C K, et al Shared control of a medical robot with haptic guidance[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12 (1): 137- 147
doi: 10.1007/s11548-016-1425-0
[85]   TAO C, YAN Q, LI Y Hierarchical shared control of cane-type walking-aid robot[J]. Journal of Healthcare Engineering, 2017, (1): 1- 11
[86]   SUN L, CHEN H, CHEN Y Q. A shared control architecture based on electrooculogram signal and global vision for smart assistive robots [C]// IEEE International Conference on Unmanned Systems. Beijing: IEEE, 2017: 146-149.
[87]   李海超, 高洪明, 吴林, 等 基于共享控制策略的遥控弧焊机器人焊缝跟踪[J]. 焊接学报, 2006, 27 (4): 5- 8
LI Hai-chao, GAO Hong-ming, WU Lin, et al Welding seam tracking of remote arc welding robot based on shared control strategy[J]. Transactions of the China Welding Institution, 2006, 27 (4): 5- 8
doi: 10.3321/j.issn:0253-360X.2006.04.002
[88]   LUO J, LIN Z, LI Y, et al A teleoperation framework for mobile robots based on shared control[J]. IEEE Robotics and Automation Letters, 2019, 5 (2): 377- 384
[89]   倪得晶, 宋爱国, 李会军 基于虚拟现实的机器人遥操作关键技术研究[J]. 仪器仪表学报, 2017, 38 (10): 2351- 2363
NI De-jing, SONG Ai-guo, LI Hui-jun Research on key technologies of robot teleoperation based on virtual reality[J]. Chinese Journal of Scientific Instrument, 2017, 38 (10): 2351- 2363
doi: 10.3969/j.issn.0254-3087.2017.10.001
[90]   BELAIDI H, HENTOUT A, BENTARZI H Human-robot shared control for path generation and execution[J]. International Journal of Social Robotics, 2019, 4 (11): 609- 620
doi: 10.1007/s12369-019-00520-3
[91]   AMIRSHIRZAD N, KUMRU A, OZTOP E Human adaptation to human-robot shared control[J]. IEEE Transactions on Human-Machine Systems, 2019, 49 (2): 126- 136
doi: 10.1109/THMS.2018.2884719
[92]   D'INTINO G, ARENELLA A, OLIVARI M, et al. Experimental evaluation of a 2-DoF haptic shared control system based on pilot intent estimation [C]// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Miyazaki: IEEE, 2019: 3225-3230.
[93]   EL-HUSSIENY H, ASSAL S F M, ABOUELSOUD A A, et al. A novel intention prediction strategy for a shared control tele-manipulation system in unknown environments [C]// IEEE International Conference on Mechatronics. Nagoya: IEEE, 2015.
[94]   LI Y, TEE K P, YAN R, et al Reinforcement learning for human-robot shared control[J]. Assembly Automation, 2019, 40 (1): 105- 117
doi: 10.1108/AA-10-2018-0153
[1] DU Jin-hua, XUE Yun-tian, LIU Quan-wei. Parameter matching calibration and implementation of permanent magnet integrated starter/generator system[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1851-1860.
[2] YANG Chun ning, FANG Jia wei, LI Chun, GE Hui. Hypersonic vehicle blended control methodology based on stability criterion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 422-428.
[3] WANG Yang wei, YAN Yong cheng, LIU Kai, ZHAO Dong biao. Development and swimming experimental research on bionic stingray robot[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 106-112.
[4] GE Zheng, WANG Wei rui, WANG Jun ding. Control strategy for brake clearance adjustment of electronic mechanical brake[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 138-144.
[5] ZHAO Peng yu, CHEN Ying long, ZHOU Hua. Overview of hydraulic hybrid engineering machinery system and control strategy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 449-459.
[6] ZHAO Peng yu, CHEN Ying long, ZHOU Hua. Overview of hydraulic hybrid engineering machinery system and control strategy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 0-.
[7] ZHU Shao peng, LIN Ding, XIE Bo zhen, YU Xiao li, HAN Song. Driving force hierarchical control strategy of electric vehicle[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2094-2099.
[8] XIAO Yang, GUAN Cheng, WANG Fei. Energy management strategy for torque coupling based hydraulic hybrid excavator[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 70-77.
[9] XU Bing, CHENG Min, YANG Hua yong, ZHANG Jun hui. Electrohydraulic flow matching system with bypass pressure compensation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1762-1767.
[10] WANG Jian, HU Xi-xing, GUO Ji-feng. Attitude detection and control of two-degree-of-freedom ultrasonic motor[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 871-876.
[11] JIANG Ji-hong, LIU Hong-peng, JIANG Zhen-zhou, WANG Wei. Supercapacitor selection and control strategy of energy storage elevator[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 610-615.
[12] CHEN Ping-lu, YU Xiao-li, NIE Xiang-hong, FANG Yi-dong. Control strategy for parallel hybrid air-fuel vehicle[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 348-353.
[13] DING Hui, HU Xie-he. Review of AC asynchronous motor speed control strategy[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 50-58.