Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 83-90    DOI: 10.3785/j.issn.1008-973X.2020.01.010
Civil Engineering, Transportation Engineering     
Relaxation effect of welding residual stress in deck-to-rib joints
Wen ZHONG1(),You-liang DING1,*(),Yong-sheng SONG2,Bao-ya CAO1,Fang-fang GENG3
1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2. College of Architecture Engineering, Jinling Institute of Technology, Nanjing 211196, China
3. College of Architecture Engineering, Nanjing Institute of Technology, Nanjing 211167, China
Download: HTML     PDF(1445KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A coupled stress analysis model that considers the welding residual stress and vehicle stress was established in order to accurately analyze the influence of the actual tension and compression state and stress ratio at the deck-to-rib welding seam position on the fatigue life of an orthotropic steel deck (OSD). The calculation of the fatigue parameters, including the stress ratio and equivalent stress amplitude, enables the development of a refined calculation method for the coupling stress between the welding residual stress and vehicle stress. A qualitative analysis of the fatigue life under the vehicle load and residual stress field was conducted using the proposed method by taking the Jiangyin Yangtze River Bridge as an example. A case analysis show that when the residual tensile stress in the welding seam position is superimposed on the mainly tensile cyclic vehicle load stress, the longitudinal and transverse stress relaxation exceeds the peak vehicle load stress and significant stress relaxation occurred. When the residual tensile stress in the welding seam position is superimposed on the mainly compressive cyclic vehicle load stress, the relaxations of both the longitudinal and transverse stresses are not obvious. Compared with the stress state of the welding point under the action of only the vehicle stress, when the coupling effect of the welding residual stress and vehicle stress is considered, the fatigue stress state of the welding point has undergone an essential change under cyclic compressive stress, that is, the compressive stress state that does not require a fatigue check is changed to the tensile stress state. Although the fatigue state of the tensile stress cycle condition has not changed, the fatigue life of the welding point changes from infinite to finite under the tensile condition.



Key wordsorthotropic steel deck (OSD)      stress relaxation effect      deck-to-rib joints      welding residual stress      coupling stress     
Received: 10 December 2018      Published: 05 January 2020
CLC:  TU 318  
Corresponding Authors: You-liang DING     E-mail: wen_zhong71@126.com;civilding@seu.edu.cn
Cite this article:

Wen ZHONG,You-liang DING,Yong-sheng SONG,Bao-ya CAO,Fang-fang GENG. Relaxation effect of welding residual stress in deck-to-rib joints. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 83-90.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.010     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/83


顶板-纵肋焊接细节残余应力的松弛效应

为了准确把握钢桥面顶板-纵肋焊缝位置的真实拉、压状态和应力比对正交异性钢桥面板(OSD)疲劳寿命的影响,通过建立焊接残余应力与车载应力的耦合应力分析模型,构建焊接残余应力和车辆荷载耦合作用下的应力比、等效应力幅等疲劳参数计算方法,形成了焊接残余应力与车载应力的耦合应力精细化计算方法. 以江阴长江大桥为例,应用该方法,开展车辆荷载和残余应力场对疲劳损伤的定量分析. 案例分析表明,焊缝位置残余拉应力在叠加了以拉应力为主的循环车载应力后,纵、横向应力松弛大小均超过车载应力峰值,出现明显的应力松弛现象,而叠加以压应力为主的循环车载应力后,应力松弛效应不明显;与仅考虑车载应力作用下的焊缝位置应力状态相比,考虑焊接残余应力和车载应力耦合作用之后,压应力循环工况焊缝位置疲劳应力状态发生了本质变化,即由不需要进行疲劳验算的压应力状态变为拉应力状态;拉应力循环工况的疲劳状态虽未改变,但该状态下焊缝位置的疲劳寿命由无限变为有限.


关键词: 正交异性钢桥面板(OSD),  应力松弛效应,  顶板-纵肋细节,  焊接残余应力,  耦合应力 
Fig.1 Flow chart of coupling stress analysis of welding residual stress and vehicles load stress
Fig.2 Fine solid element sub-model of deck-to-rib for coupling analysis
Fig.3 Cross-section diagram of sub-model
Fig.4 Bilinear isotropic hardening(BISO)model
Fig.5 Shell element coarse model of steel box girder
Fig.6 Residual stress distribution of deck-to-rib welded joints
Fig.7 Comparison between vehicles load stresses of coarse model and sub-model
Fig.8 Sketch of vehicles loading location
Fig.9 Time-history curves of vehicle load stress at welded joint position with case A~E
Fig.10 Stress response curves at weld toe with case C
工况 $\Delta {S _i}$/
MPa
${\sigma _{\rm{m}}}$/
MPa
${n_i}$ Ni D
工况C, 仅考虑车载作用-图10(a) 41.53 ?20.77 0.5 1.538×107 1.741×10?6
41.53 ?20.77 0.5 1.538×107
83.06 ?41.53 0.5 1.249×106
74.75 ?37.38 1.0 1.713×106
83.07 ?41.53 0.5 1.249×106
74.76 ?37.38 0.5 1.713×106
工况C, 残余应力与车载应力耦合作用-图10(b) 5.14 339.02 0.5 0 1.141×10?6
5.14 339.02 0.5 0
7.72 338.85 1.0 2.347×106
7.84 338.79 0.5 1.992×106
7.84 338.79 0.5 1.992×106
7.72 338.85 0.5 2.347×106
工况D, 仅考虑车载作用-图11(a) 11.55 5.78 0.5 0 0
11.55 5.78 0.5 0
23.10 11.55 0.5 0
20.79 10.39 1.0 0
20.79 10.39 1.0 0
23.10 11.55 0.5 0
工况D, 残余应力与车载应力耦合作用-图11(b) 8.75 328.06 1.0 0 3.681×10-9
15.23 331.41 0.5 2.796×108
14.06 330.64 1.0 0
15.31 331.36 0.5 2.641×108
14.08 330.64 0.5 0
14.06 330.66 0.5 0
Tab.1 Comparison of fatigue damage of case C and case D
Fig.11 Stress response curves at weld toe with case D
[1]   张清华, 卜一之, 李乔 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30 (3): 14- 30
ZHANG Qing-hua, BU Yi-zhi, LI Qiao Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 14- 30
doi: 10.3969/j.issn.1001-7372.2017.03.002
[2]   LIU R, JI B H, WANG M, et al Numerical evaluation of toe-deck fatigue in orthotropic steel bridge deck[J]. Journal of Performance of Constructed Facilities, 2015, 29 (6): 04014180
doi: 10.1061/(ASCE)CF.1943-5509.0000677
[3]   SONG Y S, DING Y L, WANG G X, et al Fatigue-life evaluation of a high-speed railway bridge with an orthotropic steel deck integrating multiple factors[J]. Journal of Performance of Constructed Facilities, 2016, 30 (5): 04016036
doi: 10.1061/(ASCE)CF.1943-5509.0000887
[4]   YA S, YAMADA K, ISHIKAWA T Fatigue evaluation of rib-to-deck welded joints of orthotropic steel bridge deck[J]. Journal of Bridge Engineering, 2011, 16 (4): 492- 499
doi: 10.1061/(ASCE)BE.1943-5592.0000181
[5]   AASHTO LRFD bridge design specifications: AASHTO LRFD-2007 [S]. Washington, DC: American Association of State Highway and Transportation Officials, 2007.
[6]   Eurocode3: design of steel structures, part1-9: fatigue: BS EN1993-1-9: 2005 [S]. Belgium: European Committee for Standardization, 2005.
[7]   公路钢结构桥梁设计规范: JTB-D64-2015[S]. 北京: 中华人民共和国交通运输部, 2015.
[8]   王春生, 翟慕赛, 唐友明, 等 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30 (3): 82- 95
WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al Numerical fracture simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 82- 95
doi: 10.3969/j.issn.1001-7372.2017.03.009
[9]   CUI C, BU Y Z, BAO Y, et al Strain energy-based fatigue life evaluation of deck-to-rib welded joints in OSD considering combined effects of stochastic traffic load and welded residual stress[J]. Journal of Bridge Engineering, 2017, 23 (2): 04017127
[10]   卫星, 姜苏 基于断裂力学的钢桥面肋-板接头疲劳寿命预测[J]. 西南交通大学学报, 2017, 52 (1): 16- 22
WEI Xing, JIANG Su Fatigue life pediction on rib-to-deck welded joints of steel bridge deck based on LEFM[J]. Journal of Southwest Jiaotong University, 2017, 52 (1): 16- 22
doi: 10.3969/j.issn.0258-2724.2017.01.003
[11]   张高楠, 石广玉, 王晓丹 正交异性钢桥面板焊缝的疲劳寿命评估方法[J]. 固体力学学报, 2013, 33 (Suppl. 1): 216- 223
ZHANG Gao-nan, SHI Guang-yu, WANG Xiao-dan Evaluation of the approaches for fatigue life prediction of welded joints of orthotropic steel decks and some suggestions[J]. Chinese Journal of Solid Mechanics, 2013, 33 (Suppl. 1): 216- 223
[12]   崔闯. 基于应变能的钢桥面板与纵肋连接细节疲劳寿命评估方法及其可靠度研究[D]. 成都: 西南交通大学, 2018.
CUI Chuang. Research on fatigue life evaluation and reliability based on strain energy in deck-to-rib joint of orthotropic steel deck [D]. Chengdu: Southwest Jiaotong University, 2018.
[13]   罗白璐. 交变载荷下厚板表面焊接残余应力的松弛研究[D]. 武汉: 武汉理工大学, 2010.
LUO Bai-lu. Relaxation performance of welding residual stress under alternate loadings [D]. Wuhan: Wuhan University of Technology, 2010.
[14]   DENG D FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects[J]. Materials and Design, 2009, 30 (2): 359- 366
doi: 10.1016/j.matdes.2008.04.052
[15]   TRIFONOV O V, CHERNIY V P Analysis of Stress-strain state in a steel pipe strengthened with a composite wrap[J]. Journal of Pressure Vessel Technology, 2014, 136 (5): 051202
doi: 10.1115/1.4027229
[16]   赵秋, 吴冲 U肋加劲板焊接残余应力数值模拟分析[J]. 工程力学, 2012, 29 (8): 262- 268
ZHAO Qiu, WU Chong Numerical analysis of welding residual stress of U-rib stiffened plate[J]. Engineering Mechanics, 2012, 29 (8): 262- 268
doi: 10.6052/j.issn.1000-4750.2010.12.0935
[17]   顾颖. U肋加劲钢桥面板焊接残余应力与变形研究[D]. 成都: 西南交通大学, 2011.
GU Ying. Research on welding residual stresses and deformations in steel bridge deck stiffened with U-shaped ribs [D]. Chengdu: Southwest Jiaotong University, 2011.
[18]   崔冰, 刘晓光, 张胜利, 等. 正交异性钢桥面系统的设计和维护指南(报批稿)[M]. 北京: 中国铁道科学研究院, 2010: 13-14.
[19]   铁路桥梁钢结构设计规范: TB10091-2017 [S]. 北京: 国家铁路局, 2017.
[20]   CAO B Y, DING Y L, SONG Y S, et al Fatigue life evaluation for deck-rib welding details of orthotropic steel deck integrating mean stress effects[J]. Journal of Bridge Engineering, 2019, 24 (2): 04018114
doi: 10.1061/(ASCE)BE.1943-5592.0001344
[1] Feng YU,Xian XU,Yao-zhi LUO. Rotary retractable plate structures with parallelogram closed-loop chains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1040-1046.
[2] Yun-peng CHU,Xiu-li WANG,Yong YAO. Experimental research on seismic behavior of thin cold-formed steel wall–floor connections[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 732-742.
[3] LOU Wen-juan, DUAN Zhi-yong, ZHUANG Qing-hua. Joint probability density function of extreme wind speed and direction[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1057-1063.
[4] WANG Dai-wei, LUO Yao-zhi. Configuration research on parallelogram closed-loop linkages[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 812-817.