Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 801-809    DOI: 10.3785/j.issn.1008-973X.2021.05.001
机械工程     
基于混合遗传算法的机器人改进摩擦模型辨识
张铁(),胡亮亮,邹焱飚
华南理工大学 机械与汽车工程学院,广东 广州 510640
Identification of improved friction model for robot based on hybrid genetic algorithm
Tie ZHANG(),Liang-liang HU,Yan-biao ZOU
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
 全文: PDF(2150 KB)   HTML
摘要:

为了解决机器人运动过程中库伦+黏性摩擦模型不能真实反映关节摩擦的非线性特性的问题,采用改进Stribeck摩擦模型对机器人关节摩擦进行建模,提出基于混合遗传算法与余弦轨迹的模型参数辨识方法. 采用不同的余弦轨迹对机器人关节进行激励,利用已知的机器人动力学方程确定关节摩擦力矩,从而建立机器人关节速度与关节摩擦力矩之间的映射关系,并利用模拟退火混合遗传算法对摩擦参数进行辨识. 为了验证所提方法的有效性,以多关节串联型机器人为研究对象,进行摩擦参数辨识实验. 实验结果表明,与传统的库伦+黏性摩擦模型相比,改进的Stribeck摩擦模型可以减少17.7%~33.6%的关节力矩计算误差,并能够进一步提高机器人动力学模型的准确性.

关键词: 机器人动力学模型关节力矩Stribeck摩擦模型混合遗传算法参数辨识    
Abstract:

Aiming at the problem that the Coulomb and viscous friction model cannot really reflect the nonlinear characteristics of friction in the process of robot motion, an improved Stribeck friction model was used to describe the joint friction, and a method of model parameter identification based on the combination of hybrid genetic algorithm and cosine trajectory was proposed. First, different cosine trajectories were used to excite the robot joints, and the friction torque of the joints was determined using the known dynamic equations of the robot, so as to establish the mapping relationship between the robot joint velocity and the joint friction torque. Second, the simulated annealing hybrid genetic algorithm was used to identify the friction parameters. Finally, a multi-joint series robot was used as the research object, and the friction parameter identification experiments were carried out to verify the effectiveness of the proposed method. Experimental results indicate that compared with the traditional Coulomb and viscous friction model, the improved Stribeck friction model can reduce the calculation error of the joint torque by 17.7% to 33.6%, and can further improve the accuracy of the robot dynamic model.

Key words: robot dynamic model    joint torque    Stribeck friction model    hybrid genetic algorithm    parameter identification
收稿日期: 2020-06-28 出版日期: 2021-06-10
CLC:  TP 242.2  
基金资助: 国家科技重大专项资助项目(2015ZX04005006);广东省科技计划资助项目(2019B040402006);中山市科技重大专项资助项目(2016F2FC0006,2018A10018)
作者简介: 张铁(1968—),男,教授,博导,从事机器人技术及工程应用研究. oricid.org/0000-0001-9716-3970. E-mail: merobot@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张铁
胡亮亮
邹焱飚

引用本文:

张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.

Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.001        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/801

图 1  改进的Stribeck摩擦模型
图 2  Stribeck摩擦模型拟合曲线
图 3  模拟退火混合遗传算法流程图
图 4  机器人实验平台
图 5  关节2、3在不同位置下对关节1摩擦力矩的影响
图 6  单个轨迹下关节1的实际摩擦力矩-速度图
辨识方法 ${f_{\rm{C}}}/$ $\left( {{\rm{N}} \cdot {\rm{m}}} \right)$ ${f_{\rm{S}}}/$ $\left( {{\rm{N}} \cdot {\rm{m}}} \right)$ $v_{\rm{s}}/$ $\left( {{\rm{rad}} \cdot {{\rm{s}}^{{\rm{ - 1}}}}} \right)$ ${f_{\rm{V}}}/$ $\left( {{\rm{N}} \cdot {\rm{m}} \cdot {\rm{s}} \cdot {\rm{ra}}{{\rm{d}}^{{\rm{ - 1}}}}} \right)$ $\displaystyle\sum{{e^2} }/({\rm{N} } \cdot {\rm{m} })^2$
最小二乘法 10.76 19.66 0.0385 24.03 251
遗传算法 10.75 19.73 0.0384 24.05 252
混合遗传算法 10.76 19.68 0.0385 24.04 251
表 1  3种算法的辨识结果
图 7  关节1的摩擦力矩拟合图
图 8  目标函数 $J$的优化过程
算法 使用条件 计算效率 参数之间关联性
最小二乘法 要求目标函数连续可微,故只适用于同一速度方向下的摩擦参数辨识 计算速度较快,但是计算程序较复杂 先通过求根法得到中间变量,再依次求出其余摩擦参数,各摩擦参数的准确性直接受中间变量的影响
遗传算法 无特殊要求,实用范围广泛 计算量大,须进行大量无效迭代,故计算速度较慢 同时初始化各摩擦参数,在辨识过程中参数彼此之间相互独立
混合遗传算法 同遗传算法 每代种群的进化时间增加,但所需进化代数大大减少,
故在效率方面相对遗传算法有所提升
同遗传算法
表 2  3种摩擦参数辨识算法对比
图 9  综合2个轨迹下关节1的实际摩擦力矩-速度图
图 10  改进Stribeck摩擦模型拟合曲线
关节 ${f_{\rm{C}}}/$
$\left( {{\rm{N}} \cdot {\rm{m}}} \right)$
${f_{\rm{S}}}/$
$\left( {{\rm{N}} \cdot {\rm{m}}} \right)$
$v_{\rm{s}}/$
$\left( {{\rm{rad}} \cdot {{\rm{s}}^{{\rm{ - 1}}}}} \right)$
$\gamma $ ${f_{\rm{V}}}/$
$\left( {{\rm{N}} \cdot {\rm{m}} \cdot {\rm{s}} \cdot {\rm{ra}}{{\rm{d}}^{{\rm{ - 1}}}}} \right)$
${f_{\rm{P}}}/$
$\left( {{\rm{N}} \cdot {\rm{m}}} \right)$
${\dot q_0}/$
$\left( {{\rm{rad}} \cdot {{\rm{s}}^{{\rm{ - 1}}}}} \right)$
1 11.64 23.19 0.02767 2 27.88 0.47 0.010
2 39.93 73.24 0.01292 2 89.24 ?3.34 0.005
3 38.53 53.78 0.01557 2 89.49 ?4.74 0.010
表 3  改进Stribeck摩擦模型辨识参数
图 11  各关节的力矩拟合图
机器人
关节
$\displaystyle\sum \varepsilon^2 $/ ${({\rm{N}} \cdot {\rm{m}})^2}$ Δ/%
库伦+黏性摩擦模型 原始Stribeck摩擦模型 改进Stribeck摩擦模型 改进Stribeck相对于库伦+黏性 改进Stribeck相对于原始Stribeck
1 629 537 449 28.6 16.3
2 26873 25076 22103 17.7 11.8
3 5881 4725 3909 33.6 17.3
表 4  不同摩擦模型下的关节力矩残差平方和
1 LEE S D, AHN K H, SONG J B. Torque control based sensorless hand guiding for direct robot teaching [C]// 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016: 745-750.
2 LEE S D, KIM M C, SONG J B. Sensorless collision detection for safe human-robot collaboration [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg: IEEE, 2015: 2392-2397.
3 GROTJAHN M, DAEMI M, HEIMANN B Friction and rigid body identification of robot dynamics[J]. International Journal of Solids and Structures, 2001, 38 (10?13): 1889- 1902
doi: 10.1016/S0020-7683(00)00141-4
4 HAMON P, GAUTIER M, GARREC P. Dynamic identification of robots with a dry friction model depending on load and velocity [C]// 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010: 6187-6193.
5 吴文祥, 朱世强, 王宣银, 等 基于摩擦模糊建模与补偿的机器人低速控制[J]. 电机与控制学报, 2013, 17 (8): 70- 77
WU Wen-xiang, ZHU Shi-qiang, WANG Xuan-yin Slow motion control of serial robots with friction compensation based on fuzzy logic system[J]. Electric Machines and Control, 2013, 17 (8): 70- 77
6 IWASAWA S, OHISHI K, YOKOKURA Y, et al. Fine sensorless force control using Stribeck model for injection molding machine [C]// 10th France-Japan/8th Europe-Asia Congress on Mecatronics (MECATRONICS2014-Tokyo). Tokyo: IEEE, 2014: 201-206.
7 KERMANI M R, PATEL R V, MOALLEM M Friction identification and compensation in robotic manipulators[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56 (6): 2346- 2353
doi: 10.1109/TIM.2007.907957
8 HENSEN R, MOLENGRAFT M, STEINBUCH M Friction induced hunting limit cycles: a comparison between the LuGre and switch friction model[J]. Automatica, 2003, 39 (12): 2131- 2137
doi: 10.1016/S0005-1098(03)00234-6
9 ARMSTRONG-HELOUVRY B. Control of machines with friction [M]. Berlin: Springer Science and Business Media, 2012.
10 MARTON L, LANTOS B Modeling, identification, and compensation of stick-slip friction[J]. IEEE Transactions on Industrial Electronics, 2007, 54 (1): 511- 521
doi: 10.1109/TIE.2006.888804
11 VAKIL M, FOTOUHI R, NIKIFORUK P N Energy-based approach for friction identification of robotic joints[J]. Mechatronics, 2011, 21 (3): 614- 624
doi: 10.1016/j.mechatronics.2010.12.007
12 KENNEDY C, DESAI J P Modeling and control of the Mitsubishi PA-10 robot arm harmonic drive system[J]. IEEE-ASME Transactions on Mechatronics, 2005, 10 (3): 263- 274
doi: 10.1109/TMECH.2005.848290
13 孙洪鑫, 王修勇, 陈政清. 辩识LuGre摩擦模型参数的2种智能算法 [C]// 第五届全国电磁流变液及其应用学术会议. 大连: 大连理工大学电子音像出版社, 2008: 1-6.
SUN Hong-xin, WANG Xiu-yong, CHEN Zheng-qing. Two intelligent algorithms of LuGrefriction model for parameter identification [C]// The 5th National Conference on Electro-rheological Fluids and Magnetorheological Suspensions. Dalian: Electronic and Audiovisual Press of Dalian University of Technology, 2008: 1-6.
14 CRAI G, JOHN J. Introduction to Robotics: Mechanics and Control [M]. New York: Pearson Education, Inc, 1986.
15 KHALIL W, DOMBRE E. Modeling, identification and control of robots [M]. Oxford: Butterworth-Heinemann, 2004.
16 吴文祥, 朱世强, 靳兴来 基于改进傅里叶级数的机器人动力学参数辨识[J]. 浙江大学学报: 工学版, 2013, 47 (2): 231- 237
WU Wen-xiang, ZHU Shi-qiang, JIN Xing-lai Dynamic identification for robot manipulators based on modified Fourier series[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (2): 231- 237
17 KHALIL W, GAUTIER M, LEMOINE P. Identification of the payload inertial parameters of industrial manipulators [C]// Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome: IEEE, 2007: 4943-4948.
18 SOUSA C D, CORTESAO R Physical feasibility of robot base inertial parameter identification: a linear matrix inequality approach[J]. The International Journal of Robotics Research, 2014, 33 (6): 931- 944
doi: 10.1177/0278364913514870
19 ARMSTRONG-HELOUVRY B. Stick-slip arising from Stribeck friction [C]// Proceedings, IEEE International Conference on Robotics and Automation. Cincinnati: IEEE, 1990: 1377-1382.
20 HONG H Research on the parameter identification of friction model for servo systems based on genetic algorithms[J]. Systems Engineering and Electronics, 2003, 2 (1): 1116- 1120
21 SRINIVAS M, PATNAIK L M Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24 (4): 656- 667
doi: 10.1109/21.286385
22 任子武, 伞冶 实数遗传算法的改进及性能研究[J]. 电子学报, 2007, 35 (2): 269- 274
REN Zi-wu, SAN Ye Improvement of real-valued genetic and performance study[J]. Acta Electronica Sinica, 2007, 35 (2): 269- 274
23 METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21 (6): 1087- 1092
doi: 10.1063/1.1699114
[1] 张铁, 梁骁翃. 平面关节型机器人关节力矩的卡尔曼估计[J]. 浙江大学学报(工学版), 2018, 52(5): 951-959.
[2] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[3] 陈鹏, 项基, 韦巍. 基于GWLN方法的冗余机械臂关节力矩约束控制[J]. 浙江大学学报(工学版), 2017, 51(1): 68-74.
[4] 王凯, 姚文熙, 吕征宇. 基于直流偏置激励的异步电机离线参数自整定[J]. 浙江大学学报(工学版), 2015, 49(7): 1382-1387.
[5] 童水光, 王相兵, 钟崴, 张健. 基于BP-HGA的起重机刚性支腿动态优化设计[J]. J4, 2013, 47(1): 122-130.
[6] 林兰芬, 欧冠男, 等. 多约束条件下自动配棉的混合遗传算法[J]. J4, 2009, 43(5): 801-806.
[7] 胡彦超 陈章位. 应用实正交多项式的多模态辨识迭代算法[J]. J4, 2008, 42(9): 1563-1567.
[8] 秦莹 江全元 曹一家 李大虎. 基于广域测量系统的电力负荷建模方法[J]. J4, 2008, 42(7): 1199-1203.
[9] 龚大成 唐志峰 项占琴 潘晓弘. 基于Preisach理论的GMA迟滞建模与参数辨识[J]. J4, 2008, 42(3): 425-428.
[10] 李蔚 张政江 盛德仁 陈坚红 任浩仁. 基于RLS的汽轮机数字电液调节系统参数辨识[J]. J4, 2008, 42(10): 1761-1764.
[11] 金海 黄进 杨家强. 感应电机转子磁链自适应观测及参数辨识[J]. J4, 2006, 40(2): 339-343.