Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 810-822    DOI: 10.3785/j.issn.1008-973X.2021.05.002
机械工程     
绳牵引刚柔式波浪补偿并联机构的设计与建模
陈原(),郭登辉,田丽霞
山东大学 机电与信息工程学院,山东 威海 264209
Design and modeling of wire-driven rigid-flexible parallel mechanism for wave compensation
Yuan CHEN(),Deng-hui GUO,Li-xia TIAN
School of Mechanical and Electrical Engineering, Shan Dong University, Weihai 264209, China
 全文: PDF(2028 KB)   HTML
摘要:

为了减少海上集装箱货物运输中风浪造成的损坏,提出刚柔混合驱动主动式波浪补偿并联机构. 基于刚柔混合并联机构的动定平台的矩阵旋转原理和几何封闭法建立位置逆解数学模型;利用空间几何原理构建机构位置正解数学模型;利用求导法则对位置逆解进行求导,建立速度雅可比矩阵与加速度的二阶影响矩阵;基于绳子是柔性变形体推导出系统刚度矩阵,探究影响系统刚度的因素和增加系统刚度的原则. 利用数值模拟仿真对运动学和系统刚度进行验证,结果表明位置正逆解的输入输出误差不超过实际误差的2.25%;发现理论仿真曲线和样机仿真曲线较吻合,误差不超过7.4%,验证了运动学模型的正确性;根据刚度矩阵发现刚度影响因素对系统刚度的影响规律. 通过对绳驱动刚柔混合驱动波浪补偿并联机构的实验验证,发现该机构的补偿效果均高于90%. 证明研究结果为刚柔混合主动式波浪补偿并联机构的运动和机构设计提供了理论支持.

关键词: 螺旋理论主动式波浪补偿刚柔混合式并联机构运动学柔性体刚度    
Abstract:

A rigid-flexible hybrid drive active parallel mechanism for wave compensation was proposed in order to reduce the damage caused by wind and waves in the transport of container goods at sea. The mathematical model of positional inverse solution was established based on the matrix rotation principle and the geometric closure method of the dynamic platform of rigid-flexible hybrid parallel mechanism. The mathematical model of the positional forward solution was constructed by using spatial geometry. The second order effect matrix of acceleration and velocity Jacobian was established by using the derivation rule to obtain the positional inverse solution. The system stiffness matrix was derived on the basis that the rope is a flexible variable body, and the factors affecting the system stiffness and the principle of increasing the system stiffness were explored. In addition, the kinematics and system stiffness values were verified by numerical simulation, and the input and output data errors of the inverse and positive solutions were not more than 2.25% of the actual errors. Results showed that the theoretical simulation curve and the prototype simulation curve coincided, and the error was not more than 7.4%, which verified the correctness of the kinematics model. The influence of stiffness factors on the stiffness of system was found according to the stiffness matrix. Finally, the parallel mechanism of the rope-driven rigid-flexible hybrid wave compensation was experimentally verified, and the compensation effect of the mechanism was more than 90%. Results provide theoretical support for the motion and the mechanism design of rigid-flexible hybrid active parallel mechanism for wave compensation.

Key words: spiral theory    active wave compensation    rigid-flexible hybrid parallel mechanism    kinematics    stiffness of flexible bod
收稿日期: 2020-05-08 出版日期: 2021-06-10
CLC:  TP 242.2  
基金资助: 国家自然科学基金资助项目(52075293);中央高校基本科研业务费专项资金资助项目(2019ZRJC006);山东省重大创新工程资助项目(2017CXGC0923);山东省自然科学基金资助项目(ZR2019MEE019)
作者简介: 陈原(1976—),男,教授,博导,从事机器人机构学研究. orcid.org/0000-0003-1611-1023. E-mail: cyzghysy@sdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈原
郭登辉
田丽霞

引用本文:

陈原,郭登辉,田丽霞. 绳牵引刚柔式波浪补偿并联机构的设计与建模[J]. 浙江大学学报(工学版), 2021, 55(5): 810-822.

Yuan CHEN,Deng-hui GUO,Li-xia TIAN. Design and modeling of wire-driven rigid-flexible parallel mechanism for wave compensation. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 810-822.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.002        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/810

图 1  刚柔混合主动式波浪补偿并联机构原理图
图 2  补偿机构整体补偿效果图
图 3  刚柔混合主动式波浪补偿并联机构简图及其坐标系
图 4  波浪补偿并联机构的支链坐标系
序号 ${{{P}}_0}$/mm ${}_{{P}}^{{O}}{{R}}$ 绳长符号 计算绳长/mm 输入绳长/mm 绳长误差/mm
实例1 $\left[ {\begin{array}{*{20}{c}} { - 0.64} \\ { - 1.54} \\ {47.37} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} {0.351}&{0.813}&{0.525} \\ { - 0.876}&0&{0.318} \\ {0.397\;9}&{ - 0.573}&{0.600} \end{array}} \right]$ L1 78.574 80 1.426
L2 97.756 100 2.243
L3 98.379 100 1.621
实例2 $\left[ {\begin{array}{*{20}{c}} {5.790} \\ { - 4.222} \\ {47.370} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} {0.291}&{0.993}&{ - 0.273} \\ { - 0.769}&{0}&{ - 0.399} \\ { - 0.447}&{0.027}&{0.859} \end{array}} \right]$ L1 118.124 120 1.876
L2 131.358 130 1.358
L3 78.279 80 1.721
表 1  计算绳长与给定绳长的对比
图 5  无穷小位移下绳子变化向量和单位向量
参数 数值
固定平台的直径×厚度/mm 100×20
动平台的直径×厚度/mm 50×10
支链长度×导程/mm 70×600
支链刚度系数/(N·m?1) 200
绳索截面面积/mm2 0.83
绳索弹性模量/GPa 70.5
表 2  刚柔混合并联机构参数
图 6  绳子长度的变化
图 7  α、β按照预定轨迹随时间变化时绳子速度与时间的关系
图 8  α、β按照预定轨迹随时间变化时绳子加速度与时间的关系
图 9  动平台绕X轴旋转时系统刚度的变化
图 10  Z方向高度变化时系统刚度的变化
图 11  绳子预紧力对系统整体刚度的影响
图 12  绳牵引刚柔混合波浪补偿并联机构实验样机
图 13  控制系统PID控制框图
图 14  末端执行器位姿补偿运动
图 15  补给船舶与补偿机构末端执行器的运动曲线
图 16  横摇时绳索拉力的变化
1 祝福, 刘晓林 船用起重机主动式升沉补偿控制的研究[J]. 船电技术, 2016, 4 (36): 30- 36
ZHU Fu, LIU Xiao-lin Analysis of active rising and falling compensation control in marine crane[J]. Marine Electric and Electronic Technology, 2016, 4 (36): 30- 36
2 刘贤胜. 船用起重机主动升沉补偿控制系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
LIU Xian-sheng. Reach on active heave compensation control system of marine crane[D]. Harbin: Harbin University of Engineering, 2016.
3 顾永凤, 邱广庭, 谢荣 6级海况下波浪补偿装置平台的机构优化设计[J]. 船舶科学技术, 2017, 39: 141- 145
GU Yong-feng, QIU Guang-ting, XIE Rong Optimization design of the mechanism of 6-level wave compensation device platform under sea condition[J]. Ship Science and Technology, 2017, 39: 141- 145
4 王哲骏, 谢金辉, 高剑 波浪补偿技术现状和发展趋势[J]. 舰船科学技术, 2014, 36 (11): 1- 7
WANG Zhe-jun, XIE Jin-hui, GAO Jian Current situation and development trend of wave compensation technology[J]. Ship Science and Technology, 2014, 36 (11): 1- 7
doi: 10.3404/j.issn.1672-7649.2014.11.02
5 唐刚, 李庆中, 杨志启 基于MATLAB的波浪补偿平台动力学分析[J]. 上海海事大学学报, 2018, 39 (2): 81- 85
TANG Gang, LI Qing-zhong, YANG Zhi-qi Dynamic analysis of wave compensation platform based on MATLAB[J]. Shanghai University of Science and Technology, 2018, 39 (2): 81- 85
6 DRISCOLL F R, NAHON M, LUECK R G A comparison of ship-mounted and cage-mounted passive heave compensation systems[J]. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122 (3): 214- 221
doi: 10.1115/1.1287167
7 WU K, YAO B, FU B, et al Research on the performance of passive heave compensator for tethered oprated vehicle system[J]. Journal of Shanghai Jiaotong University: Science, 2011, 16 (1): 40- 44
doi: 10.1007/s12204-011-1092-9
8 孙友刚, 李万莉, 刘永祥 海上浮吊平台作业的波浪补偿系统的仿真与研究[J]. 中国工程机械学报, 2016, 3 (14): 198- 205
SUN You-gang, LI Wan-li, LIU Yong-xiang Simulation on heave compensation system of floating cranes during offshore operation[J]. Chinese Journal of Construction Machinery, 2016, 3 (14): 198- 205
9 董睿, 陶利民, 陈仲生. 基于Simulink 的主动式波浪补偿系统建模与分析[D]. 长沙: 国防科技大学, 2009.
DONG Rui, TAO Li-min, CHEN Zhong-sheng. Modeling and analysis of active wave compensation system based on Simulink[D]. Changsha: University of Defense Science and Technology, 2009.
10 杨文林, 张艾群, 张竺英, 等 有缆水下机器人主动升沉补偿控制研究[J]. 中国机械工程, 2009, 23 (20): 2777- 2781
YANG Wen-lin, ZHANG Ai-qun, ZHANG Zhu-lan, et al Research on active heave compensation control of remotely operated vehicle[J]. China Mechanical Engineering, 2009, 23 (20): 2777- 2781
11 张大兵, 乌建中, 卢飞平, 等 船用起重机升沉补偿系统分析[J]. 机械科技与技术, 2012, 2 (31): 265- 269
ZHANG Da-bing, WU Jian-zhong, LU Fei-ping, et al Analysis on heave compensation system of ship-mounted crane[J]. Mechanical Technology and Technology, 2012, 2 (31): 265- 269
12 梁东升, 卢飞平, 佘建国, 等 波浪补偿装置的运动学分析与仿真[J]. 江苏科技大学学报: 自然科学版, 2016, 1 (30): 265- 269
LIANG Dong-sheng, LU Fei-ping, SHE Jian-guo, et al Analysis and simulation of the kinematics of wave compensation devices[J]. Journal of Jiangsu University of Science and Technology: Natural Science Edition, 2016, 1 (30): 265- 269
13 顾根, 李滨城, 李明坤 浮式起重机补偿装置平台的运动仿真分析[J]. 机械工程与自动化, 2017, (5): 91- 93
GU Gen, LI Bin-cheng, LI Ming-kun Motion simulation analysis of compensation device platform of floating crane[J]. Mechanical Engineering and Automation, 2017, (5): 91- 93
14 KU N K, CHA J H, ROH M I, et al A tagline proportional-derivative control method for the anti-swing motion of a heavy load suspended by a floating crane in waves[J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritine Environment, 2013, 4 (123): 357- 366
15 XIAO Y, LIN Q, ZHENG Y, et al Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel[J]. Chinese Journal of Aeronautics, 2010, 23 (4): 393- 400
doi: 10.1016/S1000-9361(09)60233-8
16 TANG X An overview of the development for cable-driven parallel manipulator[J]. Advances in Mechanical Engineering, 2014, 2014 (1): 1- 9
17 NEUPERT J, MAHL T, HAESSIG B, et al. A heave compensation approach for offshore cranes[C]// Proceedings of the American Control Conference. Piscataway: IEEE, 2008: 538-543.
18 DU J, BAO H, DUAN X, et al Jacobian analysis of a long-span cable-driven manipulator and its application to forward solution[J]. Mechanism and Machine Theory, 2010, 45 (9): 1227- 1238
doi: 10.1016/j.mechmachtheory.2010.05.005
19 LYTLE A M, SAIDI K S, BOSTELMAN R V, et al Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane[J]. Automation in Construction, 2004, 13 (1): 101- 118
doi: 10.1016/j.autcon.2003.08.009
20 郭浩, 王化明, 基于介电型EAP的多连杆绳驱动机器人研究[D]. 南京: 南京航空航天大学, 2015.
GUO Hao, WANG Hua-ming. Research on multi-link rod-driven robot based on dielectric EAP[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
21 王立东, 陈原 绳驱动刚柔混合式波浪运动补偿机构的 运动学建模与碰撞干涉检测[J]. 兵工学报, 2020, 4 (41): 737- 748
WANG Li-dong, CHEN Yuan Kinematics modeling and collision interference detection of cable-driven rigid-flexible hybrid wave motion compensation mechanism[J]. Acta Armamentar, 2020, 4 (41): 737- 748
22 陈涛, 佟志忠. 基于刚柔混合广义并联机构的轴孔柔顺装配技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
CHEN Tao, TONG Zhi-zhong. Research on axial hole flexible assembly technology based on rigid-flexible hybrid generalized parallel mechanism[D]. Harbin: Harbin Institute of Technology, 2018.
23 VALENTIN S, WERNER K, ANDREAS P Presentation of experimental results on stability of a 3 DOF4-cable-driven parallel robot without constraints[J]. International Journal of Control, Automation and Systems, 2015, 12 (4): 852- 860
24 ZI B, WANG N, QIAN S, et al Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer[J]. Mechanism and Machine Theory, 2019, 132: 207- 222
doi: 10.1016/j.mechmachtheory.2018.11.003
[1] 李伟达,王柱,张虹淼,李娟,顾洪. 床式步态康复训练系统机构设计[J]. 浙江大学学报(工学版), 2021, 55(5): 823-830.
[2] 毛晨涛,陈章位,张翔,祖洪飞. 基于相对精度指标的机器人运动学校准[J]. 浙江大学学报(工学版), 2020, 54(7): 1316-1324.
[3] 李研彪,郑航,徐梦茹,罗怡沁,孙鹏. 5-PSS/UPU并联机构的多目标性能参数优化[J]. 浙江大学学报(工学版), 2019, 53(4): 654-663.
[4] 蒋卓华, 蒋焕煜, 童俊华. 穴盘苗自动移栽机末端执行器的优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1119-1125.
[5] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[6] 王明斗, 陶建峰, 覃程锦, 刘成良. 空间余量最优的拼装机轨迹规划[J]. 浙江大学学报(工学版), 2017, 51(3): 453-460.
[7] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[8] 黄水华,江沛,韦巍,项基,彭勇刚. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179.
[9] 江沛, 黄水华, 韦巍, 单才华, 项基.
带关节约束的非冗余机械手臂二阶逆运动学控制
[J]. 浙江大学学报(工学版), 2015, 49(10): 1885-1892.
[10] 李巍, 赵志刚, 石广田, 孟佳东. 多机器人并联绳牵引系统的运动学及动力学解[J]. 浙江大学学报(工学版), 2015, 49(10): 1916-1923.
[11] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.
[12] 陈庆诚,朱世强,王宣银,张学群. 基于旋量理论的串联机器人逆解子问题求解算法[J]. J4, 2014, 48(1): 8-14.
[13] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.
[14] 艾青林, 祖顺江, 胥芳. 并联机构运动学与奇异性研究进展[J]. J4, 2012, 46(8): 1345-1359.
[15] 艾青林,黄伟锋,祖顺江. 基于螺旋理论的钢带并联机器人力学特性数值分析[J]. J4, 2011, 45(9): 1650-1656.