Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1785-1794    DOI: 10.3785/j.issn.1008-973X.2020.09.015
机械与能源工程     
基于缝隙射流原理的离心泵空化控制研究
赵伟国1,2(),路佳佳1,2,赵富荣1,2
1. 兰州理工大学 能源与动力工程学院,甘肃 兰州 730050
2. 甘肃省流体机械及系统重点实验室,甘肃 兰州 730050
Cavitation control of centrifugal pump based on gap jet principle
Wei-guo ZHAO1,2(),Jia-jia LU1,2,Fu-rong ZHAO1,2
1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. Key Laboratory of Fluid Machinery and System, Lanzhou 730050, China
 全文: PDF(2238 KB)   HTML
摘要:

为了改善低比转速离心泵内的空化流动状态,提出一种在叶片上设置缝隙的被动控制方法,探究该结构对空化的抑制效果及其控制机理. 采用数值模拟方法探讨结构对空化的抑制. 采用修正的SST k-ω湍流模型和Kubota空化模型,对原始叶轮和改型叶轮分别进行定常及非定常数值计算,获得设计工况下2种叶轮形式在各个空化阶段的流场结构及压力脉动特性. 计算结果表明:改型叶轮中经缝隙流向叶片背面的高压流体提高了叶片背面的压力,对空化初生、空化发展及空化剧烈阶段均产生了抑制作用,特别是空化剧烈阶段,与原始叶轮相比,其空泡体积分数减少了60.6%;与原始叶轮相比,改型叶轮内液相区的压力脉动主频幅值在各个空化阶段均有所下降.

关键词: 低比转速离心泵空化抑制缝隙射流数值模拟    
Abstract:

A passive control method with slot on the blade was proposed, and the cavitation suppression effect and control mechanism of the structure were explored, in order to improve the cavitation flow state in low specific speed centrifugal pump. The restraining effect of the structure on cavitation was explored by numerical simulation method. The modified SST k-ω turbulence model and Kubota cavitation model were used to calculate the steady and unsteady flow on the original impeller and the modified impeller, respectively, to obtain the flow field structure and pressure pulsation characteristic of two impeller forms in each cavitation stage under the design conditions. The calculation results show that the high-pressure fluid flowing to the back of the blade through the gap in the modified impeller increases the pressure on the back of the blade, which has inhibitory effect on initial cavitation, the development of cavitation and the intense stage of cavitation. Especially for the intense stage of cavitation, the cavity volume fraction decreased by 60.6% compared with the original model. the main frequency amplitude of the pressure pulsation in the liquid region of the modified impeller decreased at each cavitation stage, compared with that of the original impeller.

Key words: low specific speed centrifugal pump    cavitation suppression    gap jet    numerical simulation
收稿日期: 2019-08-14 出版日期: 2020-09-22
CLC:  TH 311  
基金资助: 国家重点研发计划资助项目(2018YFB0606103);甘肃省自然科学基金资助项目(18JR3RA149)
作者简介: 赵伟国(1979—),男,教授,从事水力机械流动理论及空化多相流研究. orcid.org/:000-0002-3550-604X. E-mail: zhaowg@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵伟国
路佳佳
赵富荣

引用本文:

赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.

Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.015        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1785

图 1  湍流黏度修正函数
参数 符号 数值 单位
设计流量 Q0 8.6 m3/h
额定转速 n 500 r/min
叶轮出口直径 D2 310 mm
叶轮进口直径 D1 85 mm
设计扬程 H 4.5 m
叶片数 Z 6 -
叶轮出口宽度 b2 12 mm
叶片通过频率 BPF 50 Hz
表 1  单级单吸模型泵几何参数
图 2  原始模型的几何模型及射流孔几何参数示意图
图 3  计算域网格及叶片表面的y+值云图
方案 网格节点数 总网格数 H/m
进口段 叶轮 蜗壳
方案1 393 576 815 610 302 852 1 512 038 4.42
方案2 721 868 984 378 370 910 2 077 156 4.58
方案3 721 868 1 317 600 370 910 2 410 378 4.58
表 2  计算域网格无关性检验
图 4  离心泵可视化实验平台示意图
图 5  原始叶轮的模拟值与试验值对比
图 6  原始叶轮与改型叶轮的外特性对比
图 7  原始叶轮与改型叶轮的空化特性对比
图 8  一个叶轮旋转周期内原始叶轮与改型叶轮的空泡体积分数对比
图 9  原始叶轮与改型叶轮中的截面绝对压力分布
图 10  原始叶轮与改型叶轮的截面空泡体积分数及流线分布
图 11  当空化数为0.13时原始叶轮与改型叶轮的截面速度矢量图分布
图 12  当空化数为0.13时原始叶轮与改型叶轮的截面速度云图分布
图 13  原始叶轮与改型叶轮的截面湍动能分布
图 14  叶轮流道中的截面监测点布置
图 15  原始叶轮与改型叶轮的监测点压力脉动主频幅值分布
1 王勇, 刘厚林, 袁寿其, 等 离心泵非设计工况空化振动噪声的试验测试[J]. 农业工程学报, 2012, 28 (2): 35- 38
WANG Yong, LIU Hou-lin, YUAN Shou-qi, et al Experimental testing on cavitation vibration and noise of centrifugal pumps under off-design conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (2): 35- 38
doi: 10.3969/j.issn.1002-6819.2012.02.007
2 WEI Y S, SHEN Y, JIN S B Scattering effect of submarine hull on propeller non-cavitation noise[J]. Journal of Sound and Vibration, 2016, 370: 319- 335
doi: 10.1016/j.jsv.2016.01.027
3 王松林, 谭磊, 王玉川 离心泵瞬态空化流动及压力脉动特性[J]. 振动与冲击, 2013, 32 (22): 168- 173
WANG Song-lin, TAN Lei, WANG Yu-chuan Characteristics of transient cavitation flow and pressure fluctuation for centrifugal pump[J]. Journal of Vibration and Shock, 2013, 32 (22): 168- 173
doi: 10.3969/j.issn.1000-3835.2013.22.031
4 潘中永. 泵空化基础[M]. 镇江: 江苏大学, 2010.
5 LIU H L, LIU D X, WANG Y, et al Experimental investigation and numerical analysis of unsteady attached sheet cavitating flows in a centrifugal pump[J]. Journal of Hydrodynamics, 2013, 25 (3): 370- 378
doi: 10.1016/S1001-6058(11)60375-3
6 黎慧青. 离心泵汽蚀磨损失效分析对策措施研究[D]. 广州: 华南理工大学, 2011.
LI Hui-qing. Studies on cavitation and fretting wear of centrifugal pump and counter measures [D]. Guangzhou: South China University of Technology, 2011.
7 PLESSET M S, CHAPMAN R B Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971, 47 (2): 283- 290
doi: 10.1017/S0022112071001058
8 魏梦举, 陈力, 伍涛, 等 微尺度空泡溃灭驱使微球运动的机理研究[J]. 物理学报, 2017, 66 (16): 167- 175
WEI Meng-ju, CHEN Li, WU Tao, et al Study on the mechanism of micro-sphere motion driven by micro-cavity collapse[J]. Acta Physica Sinica, 2017, 66 (16): 167- 175
9 TIMOSHEVSKIY M V, ZAPRYAGAEV I I, PERVUNIN K S, et al Manipulating cavitation by a wall jet: experiments on a 2D hydrofoil[J]. International Journal of Multiphase Flow, 2018, 99: 312- 328
doi: 10.1016/j.ijmultiphaseflow.2017.11.002
10 刘汉儒, 岳少原, 王掩刚, 等 串列叶栅缝隙射流对分离流动及叶栅性能影响的研究[J]. 推进技术, 2018, 39 (12): 2728- 2736
LIU Han-ru, YUE Shao-yuan, WANG Pu-gang, et al Study on the effect of cascade slot jet on separation flow and cascade performance[J]. Journal of Propulsion Technology, 2018, 39 (12): 2728- 2736
11 孙涛, 陈红勋, 朱兵, 等 缝隙引流叶轮的优化设计[J]. 上海大学学报: 自然科学版, 2014, 20 (2): 207- 213
SUN Tao, CHEN Hong-xun, ZHU Bing, et al Optimal design of centrifugal pumps with gap drainage blades[J]. Journal of Shanghai University: Natural Science Edition, 2014, 20 (2): 207- 213
12 张文著, 魏群, 陈红勋, 等 缝隙引流叶轮离心泵的压力脉动及振动特性[J]. 上海大学学报: 自然科学版, 2018, 24 (2): 236- 248
ZHANG Wen-zhu, WEI Qun, CHEN Hong-xun, et al Pressure fluctuation and vibration performance of centrifugal pump with gap drainage impeller[J]. Journal of Shanghai University: Natural Science Edition, 2018, 24 (2): 236- 248
13 王洋, 谢山峰, 王维军 开缝叶片低比转数离心泵空化性能的数值模拟[J]. 排灌机械工程学报, 2016, 34 (3): 210- 215
WANG Yang, XIE Shan-feng, WANG Wei-jun Numerical simulation of cavitation performance of low specific speed centrifugal pump with slotted blades[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34 (3): 210- 215
doi: 10.3969/j.issn.1674-8530.15.0114
14 韩伟, 高丽敏, 白莹, 等 高速离心叶轮叶片开缝的数值研究[J]. 流体机械, 2011, 39 (11): 17- 21
HAN Wei, GAO Li-min, BAI Ying, et al Numerical study of centrifugal compressor with slots in blade Surface[J]. Fluid Machinery, 2011, 39 (11): 17- 21
doi: 10.3969/j.issn.1005-0329.2011.11.004
15 胡赞熬, 王俊雄, 祝宝山, 等 离心泵叶轮穿孔对空化性能的影响[J]. 热能动力工程, 2018, 33 (10): 44- 51
HU Zan-ao, WANG Jun-xiong, ZHU Bao-shan, et al Effect of blade perforation on centrifugal pump cavitation characteristics[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33 (10): 44- 51
16 赵伟国, 赵国寿, 咸丽霞, 等 离心泵叶片表面布置障碍物抑制空化的数值模拟与实验[J]. 农业机械学报, 2017, 48 (9): 111- 120
ZHAO Wei-guo, ZHAO Guo-shou, XIAN Li-xia, et al Effect of surface-fitted obstacle in centrifugal pump on cavitation suppression[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (9): 111- 120
doi: 10.6041/j.issn.1000-1298.2017.09.014
17 MENTER F R Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32 (8): 1598- 1605
doi: 10.2514/3.12149
18 REBOUD J L, STUTZ B, COUTIER O. Two phase flow structure of cavitation experiment and modeling of unsteady effects [C]// Proceedings of the 3rd International Symposium on Cavitation. Grenoble: PISC, 1998.
19 KUBOTA A, KATO H, YAMAGUCHI H, et al Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1980, 111 (2): 204- 210
20 ZWART P J, GERBER A G, BELAMRI T. A two-phase flow model for predicting cavitation dynamics [C] // Proceedings of the Fifth International Conference on Multiphase Flow. Yokohama: ICMF, 2004.
21 ECKARDT D Instantaneous measurements in the jet-wake discharge flow of a centrifugal compressor impeller[J]. Journal of Engineering for Power, 1975, 97 (3): 337- 345
doi: 10.1115/1.3445999
22 ECKARDT D Detailed flow investigations within a high-speed centrifugal compressor impeller[J]. ASME Journal of Fluids Engineering, 1976, 98 (3): 390- 402
doi: 10.1115/1.3448334
23 李景银, 梁亚勋, 田华 不同型线离心风机叶轮的性能对比研究[J]. 工程热物理学报, 2008, 29 (6): 963- 966
LI Jing-yin, LIANG Ya-xun, TIAN Hua Flow field comparison between two centrifugal impellers with different blade curves[J]. Journal of Engineering Thermophysics, 2008, 29 (6): 963- 966
doi: 10.3321/j.issn:0253-231X.2008.06.016
24 关醒凡. 现代泵理论与技术[M]. 北京: 中国宇航出版社, 2010.
25 王振东 流体涡旋漫谈[J]. 现代物理知识, 2012, 24 (2): 9- 16
WANG Zhen-dong A random talk on fluid vortex[J]. Modern Physics, 2012, 24 (2): 9- 16
26 朱兵. 缝隙引流叶片提高低比转速离心泵性能的机理研究[D]. 上海大学, 2014.
ZHU Bing. Research on the mechanism of performance improving in low specific speed centrifugal pump with gap drainage blades [D]. Shanghai University, 2014.
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[3] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[4] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[5] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[6] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[7] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[8] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[9] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[10] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[11] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[12] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[13] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[14] 张晓涛,谭翀,陆愈实. 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1738-1745.
[15] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.