Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2197-2205    DOI: 10.3785/j.issn.1008-973X.2019.11.018
土木工程、市政工程     
典型饮水系统中人工甜味剂三氯蔗糖的调查
朱世翠1(),陆思嘉1,宋亚丽2,朱丽丹1,张赟3,马晓雁1,*()
1. 浙江工业大学 建筑工程学院,浙江 杭州 310023
2. 浙江科技学院 建筑工程学院,浙江 杭州 310023
3. 杭州水业集团有限公司 水质监测站,浙江 杭州 310014
Investigation of artificial sweetener sucralose in typical drinking water systems
Shi-cui ZHU1(),Si-jia LU1,Ya-li SONG2,Li-dan ZHU1,Yun ZHANG3,Xiao-yan MA1,*()
1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310023, China
2. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
3. Water Quality Monitoring Station, Hangzhou Water Group Co. Ltd, Hangzhou 310014, China
 全文: PDF(1142 KB)   HTML
摘要:

采用固相萃取-气相色谱/质谱法(SPE-GC/MS)实现水环境中微量三氯蔗糖的准确检测,以浙江省2座城市为主要调查对象,获取自生活污水厂、水源、饮用水处理工艺至终端供水管网用水全循环过程中三氯蔗糖的污染信息;考察饮用水常规及深度处理工艺单元中三氯蔗糖的存在水平及变化规律,评价工艺对三氯蔗糖的控制能力. 结果表明,三氯蔗糖在制水及供水系统中的检出率为100%,在水源水、经常规处理后的出水、经臭氧-活性炭深度处理后的水中的质量浓度分别为69.2~2 070.1、538.1~856.9、177.7~357.9 ng/L,深度处理工艺控制三氯蔗糖的效果较常规工艺略好,但仍无法实现彻底去除. 生活污水中三氯蔗糖的初始质量浓度较水源水中高,为1 033.4~2 626.3 ng/L,生物处理效果不佳,出水中的质量浓度为917.6~2 031.2 ng/L,大部分通过排放进入接纳水体. 在持续排放导致入流质量浓度增长指数高于环境降解速率的条件下,三氯蔗糖在水体中可能产生浓度累积效应.

关键词: 新型污染物人工甜味剂三氯蔗糖饮用水系统污染分布    
Abstract:

Solid phase extraction-gas chromatography/mass spectrometry (SPE-GC/MS) was employed for accurate detection of micro sucralose in aqueous system. The pollution information of sucralose in a water cycle, including sanitary sewage, water source, potable water treatment process and terminal water supply network, was obtained, with two cities in Zhejiang Province as the main investigation object. The variation of sucralose in the conventional and the advanced water treatment units was investigated and the control ability of treatment process was evaluated. Results showed that the detection rate of sucralose was 100% in water production and water supply systems. The mass concentration values of sucralose in the source water, water after conventional treatment process and water after ozone-activated carbon advanced treatment process were 69.2~2 070.1, 538.1~856.9, 177.7~357.9 ng/L, respectively. Advance treatment process was more effective for sucralose removal than conventional treatment, but was still unable to achieve complete removal. The initial mass concentration of sucralose in the sewage water was 1 033.4~2 626.3 ng/L, much higher than that in the source water. The biological process can not deal with sucralose effectively, and sucralose mass concentration in the emission water remained 917.6~2 031.2 ng/L, with most sucralose discharged into the receiving water body. Under the continuous discharge condition, if the increase rate of inflow mass concentration is higher than the environmental degradation rate, sucralose accumulation in the waterbody may occur.

Key words: emerging contaminant    artificial sweetener    sucralose    drinking water system    pollution distribution
收稿日期: 2018-09-16 出版日期: 2019-11-21
CLC:  TU 991  
基金资助: 国家自然科学基金资助项目(51678527,51208468,51878582);浙江省自然科学基金资助项目(LY19E080019)
通讯作者: 马晓雁     E-mail: 18989489305@163.com;mayaner620@163.com
作者简介: 朱世翠(1993—),女,硕士生,从事饮用水污染研究. orcid.org/0000-0002-8886-4000. E-mail: 18989489305@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
朱世翠
陆思嘉
宋亚丽
朱丽丹
张赟
马晓雁

引用本文:

朱世翠,陆思嘉,宋亚丽,朱丽丹,张赟,马晓雁. 典型饮水系统中人工甜味剂三氯蔗糖的调查[J]. 浙江大学学报(工学版), 2019, 53(11): 2197-2205.

Shi-cui ZHU,Si-jia LU,Ya-li SONG,Li-dan ZHU,Yun ZHANG,Xiao-yan MA. Investigation of artificial sweetener sucralose in typical drinking water systems. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2197-2205.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.018        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2197

图 1  各水厂工艺流程及管网水采样点分布图
图 2  三氯蔗糖的气质联用图色谱及质谱图
ρj/(μg?L?1 ρ0/(μg?L?1 Rec/% RSD/%
超纯水 0.1 0 97.6 3.5
2.0 0 100.4 3.7
5.0 0 101.5 4.7
管网水 0.1 0.17 94.8 4.6
2.0 0.17 88.1 3.2
5.0 0.17 107.7 2.3
原水 0.1 0.32 94.8 2.5
2.0 0.32 95.0 0.6
5.0 0.32 90.5 3.6
表 1  SPE-GC/MS法测定的三氯蔗糖的加标回收
采样时间 Q江-1 Q江-2 Q江-3 T溪 XT溪 L水库 T湖
2017.12 904.4 921.6 657.3 729.1 770.3 133.8 1 062.4
2018.01 1 030.8 738.9 559.1 348.0 678.9 69.2 2 070.1
2018.05 958.7 1 089.9 437.4 420.5 722.2 102.2 786.3
表 2  三氯蔗糖在水源水环境的分布情况
图 3  污水厂g中三氯蔗糖的分布及去除率效果
图 4  水厂e中三氯蔗糖质量浓度及各工艺段去除效果
图 5  水厂f中三氯蔗糖质量浓度及各工艺段去除效果
采样时间 水厂a 水厂b 水厂c 水厂d
ρi/(ng?L?1 ρt/(ng?L?1 R/% ρi/(ng?L?1 ρt/(ng?L?1 R/% ρi/(ng?L?1 ρt/(ng?L?1 R/% ρi/(ng?L?1 ρt/(ng?L?1 R/%
2017.12 904.4 729.2 19.4 921.6 323.2 64.9 657.3 340.8 48.1 729.1 301.4 58.7
2018.01 1 030.8 856.9 16.9 738.9 288.6 60.9 559.1 282.7 49.4 348.0 163.9 52.9
2018.05 958.7 820.1 14.5 1 089.9 329.7 69.7 437.4 255.3 41.6 420.5 178.8 57.5
工艺情况 常规工艺 深度处理工艺 深度处理工艺 深度处理工艺
表 3  三氯蔗糖在各水厂的质量浓度分布情况
采样点 ρB/(ng?L?1 采样点 ρB/(ng?L?1
GW1 270.1 GW6 349.6
GW2 252.2 GW7 177.7
GW3 233.9 GW8 340.1
GW4 229.5 GW9 334.2
GW5 357.9
表 4  三氯蔗糖在供水管网中的分布情况
1 凌关庭. 食品添加剂手册[M]. 北京: 化学工业出版社, 2003: 160-161.
2 PARKJ H, CARVALHO G B, MURPHY K R, et al Sucralose suppresses food intake[J]. Cell Metabolism, 2017, 25 (3): 484- 485
doi: 10.1016/j.cmet.2017.02.011
3 WANG Q P, SIMPSON S J, HERZOG H, et al Chronic sucralose or l-glucose ingestion does not suppress food intake[J]. Cell Metabolism, 2017, 26 (2): 279- 280
doi: 10.1016/j.cmet.2017.07.002
4 MAGNUSON B A, ROBERTS A, NESTMANN E R Critical review of the current literature on the safety of sucralose[J]. Food and Chemical Toxicology, 2017, 106: 324- 355
doi: 10.1016/j.fct.2017.05.047
5 CHEN S W, ZHANG H Y, LI S Investigaiton of mechanism involved in TiO2 and photo-feton photocatalytic degradaton of emerging contaminant sucralose in aqueous media [J]. Procedia Environmental Science, 2016, 31: 753- 757
doi: 10.1016/j.proenv.2016.02.064
6 XU Y, LIN Z Y, WANG Y, et al The UV/peroxymonosulfate process for the mineralization of artificial sweetener sucralose[J]. Chemical Engineering Journal, 2017, 317: 561- 569
doi: 10.1016/j.cej.2017.02.058
7 BUERGE I J, KELER M, BUSER H R, et al Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater[J]. Environmental Science and Technology, 2011, 45 (2): 615- 621
doi: 10.1021/es1031272
8 ORDONEZ E Y, QUINTANA J B, RODIL R, et al Determination of artificial sweeteners in sewage sludge samples using pressurised liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1320: 10- 16
doi: 10.1016/j.chroma.2013.10.049
9 马铃, 冯碧婷, 周萌, 等 人工甜味剂在不同类型土壤中的淋溶行为研究[J]. 生态毒理学报, 2016, 11 (2): 650- 657
MA Lin, FENG Bi-ting, ZHOU Meng, et al Study on the leaching behavior of typical artificial sweeteners in soils[J]. Asian Journal of Ecotoxicology, 2016, 11 (2): 650- 657
10 LUBICK N Artificial sweetener persists in the environment[J]. Environmental Science and Technology, 2008, 42 (9): 3125
doi: 10.1021/es087043g
11 BAENA-NOGUERAS R M, TRAVERSO-SOTO J M, BIEL-MAESO M, et al Sources and trends of artificial sweeteners in coastal waters in the bay of Cadiz (NE Atlantic)[J]. Marine Pollution Bulletin, 2018, 135: 607- 616
doi: 10.1016/j.marpolbul.2018.07.069
12 YANG Y Y, ZHAO J L, LIU Y S, et al Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination[J]. Science of the Total Environment, 2018, 616/617: 816- 823
doi: 10.1016/j.scitotenv.2017.10.241
13 ROY J W, VAN STEMPVOORT D R, BICKERTON G Artificial sweeteners as potential tracers of municipal landfill leachate[J]. Environmental Pollution, 2014, 184: 89- 93
doi: 10.1016/j.envpol.2013.08.021
14 YANG Y Y, LIU W R, LIU Y S, et al Suitability of pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta, South China[J]. Science of the Total Environment, 2017, 590/591: 616- 619
15 RICHARDSON S D, TERNES T A Water analysis: emerging contaminants and current issues[J]. Analytical Chemistry, 2011, 83 (12): 4614- 4648
doi: 10.1021/ac200915r
16 BRORSTROM-LUNDEN E, SVENSON A, VIKTOR T, et al. Measurements of sucralose in the Swedish screening program 2007 [R]. Stockholm: Swedish Environmental Research Institute, 2008.
17 KOKOTOU M G, THOMAIDIS N S Determination of eight artificial sweeteners in wastewater by hydrophilic interaction liquid chromatography-tandem mass spectrometry[J]. Analytical Methods, 2013, 5: 3825- 3833
doi: 10.1039/c3ay40599k
18 SCHEURER M, STORCK F R, BRAUCH H J, et al Performance of conventional mufti-barrier drinking watertreatment plants for the removal of four artificial sweeteners[J]. Water research, 2010, 44 (12): 3573- 3584
doi: 10.1016/j.watres.2010.04.005
19 LOOS R, GAWLIK B M, BOETTCHER K, et al Sucralose screening in European surface waters using a solid-phaseextraction-liquid chromatography-triple quadrupole mass spectrometry method[J]. Journal of Chromatography A, 2009, 1216 (7): 1126- 1131
doi: 10.1016/j.chroma.2008.12.048
20 MAWHINNEY D B, YOUNG R, VANDERFORD B J, et al Artificial sweetener sucralose in US drinking water systems[J]. Environmental Science and Technology, 2011, 45 (20): 8716- 8722
doi: 10.1021/es202404c
21 FERRER I, ZWEIGENBAUM J A, THURMAN E M Analytical methodologies for the detection of sucralose in water[J]. Analytical Chemistry, 2013, 85 (20): 9581- 9587
doi: 10.1021/ac4016984
22 QIN X F Etiology of inflammatory bowel disease: a unified hypothesis[J]. World Journal of Gastroenterology, 2012, 18 (15): 1708- 1722
doi: 10.3748/wjg.v18.i15.1708
23 PEPINO M Y, WICE B M, TIEMANN C D, et al Sucralose affects glycemic and hormonal responses to an oral glucose load[J]. Diabetes Care, 2013, 36 (9): 2530- 2535
doi: 10.2337/dc12-2221
24 SUEZ J, KOREN T, ZEEVI D, et al Artificial sweeteners induce glucose intolerance by altering the gut microbiota[J]. Nature, 2014, 514 (7521): 181- 186
doi: 10.1038/nature13793
25 LANGE F T, SCHEURER M, BRAUCH H J Artificial sweeteners-a recently recognized class of emerging environmental contaminants: a review[J]. Analytical and Bioanalytical Chemistry, 2012, 403 (9): 2503- 2518
doi: 10.1007/s00216-012-5892-z
26 GAN Z W, SUN H W, FENG B T, et al Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China[J]. Water Research, 2013, 47 (14): 4928- 4937
doi: 10.1016/j.watres.2013.05.038
27 GAN Z W, SUN H W, YAO Y M, et al Distribution of artificial sweeteners in dust and soil in China and their seasonal variations in the environment of Tianjin[J]. Science of the Total Environment, 2014, 488/489: 168- 175
doi: 10.1016/j.scitotenv.2014.04.084
28 干志伟.人工甜味剂在环境中的分布、迁移转化及光降解机理研究[D]. 天津: 南开大学, 2014.
GAN Zhi-Wei. Distribution, fate, and photolysis mechanism of artificial sweeteners in environment [D]. Tianjin: Nankai University, 2014.
29 RICHARDSON S D, KIMURA S Y Emerging environmental contaminants: challenges facing our next generation and potential engineering solutions[J]. Environmental Technology and Innovation, 2017, 8: 40- 56
doi: 10.1016/j.eti.2017.04.002
30 ORDONEZ E Y, QUINTANA J B, RODIL R, et al Determination of artificial sweeteners in water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1256: 197- 205
doi: 10.1016/j.chroma.2012.07.073
31 卫生部. 食品中三氯蔗糖(蔗糖素)的测定: GB/T 22255—2014 [S]. 北京: 中国标准出版社, 2014.
32 陈晓霞, 游景水, 杨祖伟 高效液相色谱法测定保健食品中三氯蔗糖的含量[J]. 食品安全质量检测学报, 2015, 6 (5): 1883- 1888
CHEN Xiao-xia, YOU Jing-shui, YANG Zu-wei Determination of sucralose content in health food by high performance liquid chromatography[J]. Journal of Food Safety and Quality, 2015, 6 (5): 1883- 1888
33 MEAD R N, MORGAN J B, AVERYJ B, et al Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States[J]. Marine Chemistry, 2009, 116 (1–4): 13- 17
doi: 10.1016/j.marchem.2009.09.005
34 QIU W L, WANG Z F, NIE W L, et al GC–MS determination of sucralose in Splenda[J]. Chromatographia, 2007, 66 (11/12): 935- 939
35 HOQUE M E, CLOUTIER F, ARCIERI C, et al Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon[J]. Science of the Total Environment, 2014, 487: 801- 812
doi: 10.1016/j.scitotenv.2013.12.063
36 SOH L, CONNORS K A, BROOKS B W, et al Fate of sucralose through environmental and water treatment processes and impact on plant indicator species[J]. Environmental Science and Technologyl, 2011, 45 (4): 1363- 1369
doi: 10.1021/es102719d
37 BUERGE I J, BUSER H R, KAHLE M, et al Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater[J]. Environmental Science and Technology, 2009, 43 (12): 4381- 4385
doi: 10.1021/es900126x
38 XU Y, WU Y, ZHANG W, et al Performance of artificial sweetener sucralose mineralization via UV/O3 process: kinetics, toxicity and intermediates [J]. Chemical Engineering Journal, 2018, 353: 626- 634
doi: 10.1016/j.cej.2018.07.090
39 TORRES C I, RAMARKRISHNA S, CHIU C A, et al Fate of sucralose during wastewater treatment[J]. Environmental Engineering Science, 2011, 28 (5): 325- 331
doi: 10.1089/ees.2010.0227
[1] 陈达,柳景青,陈环宇,王若玮. 独立计量分区截断管水质时空变化规律[J]. 浙江大学学报(工学版), 2019, 53(9): 1704-1710.
[2] 孙敏,鲍俊信,徐蓓,周浩. 饮用水厂排泥水及污泥中全氟化合物分布特征[J]. 浙江大学学报(工学版), 2019, 53(9): 1835-1842.
[3] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[4] 李聪,赵敬国,杨玉龙,赵桃桃. 紫外线消毒对砂滤水中余氯及三卤甲烷的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[5] 柳景青, 罗志逢, 周晓燕, 何晓芳, 任红星, 胡宝兰, 裘尚德. 水流剪切力对供水管道管壁生物膜生长的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 250-256.
[6] 杨艳, 张土乔, 刘伟超. 给水管网负压引起污染物入侵的流量计算方法[J]. 浙江大学学报(工学版), 2015, 49(7): 1262-1267.
[7] 蒋伟, 柳景青, 叶萍, 李杭加. 氧化还原电位作为铁释放监测参数的中试研究[J]. 浙江大学学报(工学版), 2015, 49(4): 769-775.
[8] 何忠华,袁一星. 基于剩余能量熵的供水管网可靠性优化设计[J]. 浙江大学学报(工学版), 2014, 48(7): 1188-1194.
[9] 高玖藜, 柳景青, 张土乔, 李聪, 蒋伟. 水中氯离子和腐植酸对管网铁释放的影响[J]. J4, 2013, 47(8): 1321-1328.
[10] 虞介泽,李聪,张土乔,毛欣炜. 改进的水质服务水平与加氯费用优化分析[J]. J4, 2013, 47(7): 1140-1147.
[11] 程伟平, 赵丹丹, 许刚, 蒋建群1. 供水管网爆管水力学模型与爆管定位[J]. J4, 2013, 47(6): 1057-1062.
[12] 张土乔,虞介泽,杨德军,金俊武. 管网水质监测点对二次加氯影响优化分析[J]. J4, 2012, 46(7): 1243-1247.
[13] 陈磊. 遗传最小二乘支持向量机法预测时用水量[J]. J4, 2011, 45(6): 1100-1103.
[14] 张燕, 张念卿. 基于部分覆盖理论的供水管网二次加氯点选址[J]. J4, 2011, 45(4): 695-698.
[15] 李红卫,王梦琳,吕谋,李红艳. 给水管网污染源定位模拟及影响因素分析[J]. J4, 2011, 45(1): 81-86.