自动化技术、计算机技术 |
|
|
|
|
基于多尺度特征映射网络的图像超分辨率重建 |
段然( ),周登文*( ),赵丽娟,柴晓亮 |
华北电力大学 控制与计算机工程学院,北京 102206 |
|
Image super-resolution reconstruction based on multi-scale feature mapping network |
Ran DUAN( ),Deng-wen ZHOU*( ),Li-juan ZHAO,Xiao-liang CHAI |
School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China |
引用本文:
段然,周登文,赵丽娟,柴晓亮. 基于多尺度特征映射网络的图像超分辨率重建[J]. 浙江大学学报(工学版), 2019, 53(7): 1331-1339.
Ran DUAN,Deng-wen ZHOU,Li-juan ZHAO,Xiao-liang CHAI. Image super-resolution reconstruction based on multi-scale feature mapping network. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1331-1339.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.012
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1331
|
1 |
YUE L W, SHEN H F, LI J, et al Image super-resolution: the techniques, applications, and future[J]. Signal Processing, 2016, 128 (11): 389- 408
|
2 |
陆志芳, 钟宝江 基于预测梯度的图像插值算法[J]. 自动化学报, 2018, 44 (06): 1072- 1085 LU Zhi-fang, ZHONG Bao-jiang Image interpolation with predicted gradients[J]. Acta Automatica Sinica, 2018, 44 (06): 1072- 1085
|
3 |
孙京, 袁强强, 李冀玮, 等 亮度--梯度联合约束的车牌图像超分辨率重建[J]. 中国图象图形学报, 2018, 23 (06): 802- 813 SUN Jing, YUAN Qiang-qiang, LI Ji-wei, et al License plate image super-resolution based on intensity-gradient prior combination[J]. Journal of Image and Graphics, 2018, 23 (06): 802- 813
|
4 |
YANG J, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches [C] // IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 1–8.
|
5 |
孙旭, 李晓光, 李嘉锋, 等 基于深度学习的图像超分辨率复原研究进展[J]. 自动化学报, 2017, 43 (5): 697- 709 SUN Xu, LI Xiao-guang, LI Jia-feng, et al Review on deep learning based image super-resolution restoration algorithms[J]. Acta Automatica Sinica, 2017, 43 (5): 697- 709
|
6 |
DONG C, CHEN C L, HE K, et al Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (2): 295- 307
doi: 10.1109/TPAMI.2015.2439281
|
7 |
YANG S, SUN Y, CHEN Y, et al Structural similarity regularized and sparse coding based super-resolution for medical images[J]. Biomedical Signal Processing and Control, 2012, 7 (6): 579- 590
doi: 10.1016/j.bspc.2012.08.001
|
8 |
DONG C, CHEN C L, TANG X. Accelerating the super-resolution convolutional neural network [C] // European Conference on Computer Vision. Amsterdam: Springer, 2016: 391–407.
|
9 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks [C] // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646–1654.
|
10 |
谢珍珠, 吴从中, 詹曙 边缘增强深层网络的图像超分辨率重建[J]. 中国图象图形学报, 2018, 23 (1): 114- 122 XIE Zhen-zhu, WU Cong-zhong, ZHAN Shu Image super-resolution reconstruction via deep network based on edge-enhancement[J]. Journal of Image and Graphics, 2018, 23 (1): 114- 122
|
11 |
李云飞, 符冉迪, 金炜, 等 多通道卷积的图像超分辨率方法[J]. 中国图象图形学报, 2017, 22 (12): 1690- 1700 LI Yun-fei, FU Ran-di, JIN Wei, et al Image super-resolution using multi-channel convolution[J]. Journal of Image and Graphics, 2017, 22 (12): 1690- 1700
|
12 |
陈书贞, 解小会, 杨郁池, 等 利用多尺度卷积神经网络的图像超分辨率算法[J]. 信号处理, 2018, 34 (09): 1033- 1044 CHEN Shu-zhen, XIE Xiao-hui, YANG Yu-chi, et al Image super-resolution algorithm based on multi-scale convolution neural network[J]. Journal of Signal Processing, 2018, 34 (09): 1033- 1044
|
13 |
GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks [C] // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2414–2423.
|
14 |
JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C] // European Conference on Computer Vision. Amsterdam: Springer, 2016: 694–711.
|
15 |
LEDIG C, WANG Z, SHI W, et al. Photo-realistic single image super-resolution using a generative adversarial network [C] // IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 105–114.
|
16 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C] // International Conference on Neural Information Processing Systems. Montreal: ACM, 2014: 2672–2680.
|
17 |
DENG X Enhancing image quality via style transfer for single image super-resolution[J]. IEEE Signal Processing Letters, 2018, 25 (4): 571- 575
doi: 10.1109/LSP.2018.2805809
|
18 |
SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C] // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874–1883.
|
19 |
REED S, AKATA Z, YAN X, et al. Generative adversarial text to image synthesis [C] // International Conference on International Conference on Machine Learning. New York City: ACM, 2016: 1060–1069.
|
20 |
ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks [C] // IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2017: 5967–5976.
|
21 |
SAJJADI M S, SCHOLKOPF B, HIRSCH M, et al. EnhanceNet: single image super-resolution through automated texture synthesis [C] // IEEE International Conference on Computer Vision. Zurich: IEEE, 2017: 4501–4510.
|
22 |
LI C, WAND M. Precomputed real-time texture synthesis with Markovian generative adversarial networks [C] // European Conference on Computer Vision. Amsterdam: Springer, 2016: 702–716.
|
23 |
YANG J, WRIGHT J, HUANG T S, et al Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19 (11): 2861- 2873
doi: 10.1109/TIP.2010.2050625
|
24 |
TIMOFTE R, LEE K M, WANG X, et al. NTIRE 2017 challenge on single image super-resolution: methods and results [C] // IEEE Conference on Computer Vision and Pattern Recognition Workshops. Hawaii, USA: IEEE, 2017: 1110–1121.
|
25 |
HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on imageNet classification [C] // IEEE International Conference on Computer Vision. Santiago: IEEE, 2015:1026–1034.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|