自动化技术、计算机技术 |
|
|
|
|
基于IABC-RBF神经网络的地下水埋深预测模型 |
邵光成1( ),章坤1,王志宇1,王小军2,3,卢佳1 |
1. 河海大学 农业工程学院,江苏 南京 210098 2. 南京水利科学研究院 水文水资源与水利工程科学国家重点实验室,江苏 南京 210029 3. 水利部应对气候变化研究中心,江苏 南京 210029 |
|
Groundwater depth prediction model based on IABC-RBF neural network |
Guang-cheng SHAO1( ),Kun ZHANG1,Zhi-yu WANG1,Xiao-jun WANG2,3,Jia LU1 |
1. College of Agricultural Engineering, Hohai University, Nanjing 210098, China 2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China 3. Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China |
引用本文:
邵光成,章坤,王志宇,王小军,卢佳. 基于IABC-RBF神经网络的地下水埋深预测模型[J]. 浙江大学学报(工学版), 2019, 53(7): 1323-1330.
Guang-cheng SHAO,Kun ZHANG,Zhi-yu WANG,Xiao-jun WANG,Jia LU. Groundwater depth prediction model based on IABC-RBF neural network. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1323-1330.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.011
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1323
|
1 |
刘东, 付强 三江平原井灌水稻地区地下水动态变化规律的小波神经网络分析[J]. 灌溉排水学报, 2008, 27 (3): 86- 89 LIU Dong, FU Qiang Dynamic variation regularities analysis of groundwater in well irrigation paddy in sanjiang plain based on waveletneural network[J]. Journal of Irrigation and Drainage, 2008, 27 (3): 86- 89
|
2 |
CHINH L V, HIRAMATSU K, HARADA M Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models[J]. Agricultural Water Management, 2009, 96 (9): 1332- 1338
doi: 10.1016/j.agwat.2009.04.005
|
3 |
张斌, 刘俊民 基于BP神经网络的地下水动态预测[J]. 水土保持研究, 2012, 19 (5): 235- 237 ZHANG Bin, LIU Jun-min Prediction of groundwater dynamics based on the BP neural network[J]. Research of Soil and Water Conservation, 2012, 19 (5): 235- 237
|
4 |
曹文洁, 肖长来, 梁秀娟, 等 RBF神经网络在地下水动态预测中的应用[J]. 水利水电技术, 2018, 49 (2): 43- 48 CAO Wen-jie, XIAO Chang-lai, LIANG Xiu-juan, et al Application of RBF neural network for groundwater dynatic prediction[J]. Water Resources and Hydropower Engineering, 2018, 49 (2): 43- 48
doi: 10.3969/j.issn.1672-9900.2018.02.014
|
5 |
曹邦兴 基于蚁群径向基函数网络的地下水预测模型[J]. 计算机工程与应用, 2010, 46 (2): 224- 226 CAO Bang-xing Prediction model of underground water level that combined ant colony algorithms with RBF network[J]. Computer Engineering and Applications, 2010, 46 (2): 224- 226
doi: 10.3778/j.issn.1002-8331.2010.02.066
|
6 |
李慧, 周维博, 刘博洋, 等 基于粒子群优化算法的RBF神经网络在泾惠渠灌区地下水位埋深预测中的应用[J]. 水电能源科学, 2014, 32 (8): 127- 130 LI Hui, ZHOU Wei-bo, LIU Bo-yang, et al Groundwater depth prediction model in Jinghui irrigation district of RBF neural network based on particle swarm optimization[J]. Water Resources and Power, 2014, 32 (8): 127- 130
|
7 |
徐强, 束龙仓, 杨桂莲, 等 基于遗传算法优化的小波神经网络在地下水位预测中的应用[J]. 水文, 2010, 30 (1): 27- 30 XU Qiang, SHU Long-cang, YANG Gui-lian, et al Application of optimized wavelet neuralnetwork based on genetic algorithm in groundwater level prediction[J]. Journal of China Hydrology, 2010, 30 (1): 27- 30
|
8 |
KARABOGA D. An idea based on honey beeswarm for numerical optimization [R]. Kayseri: Erciyes University, 2005.
|
9 |
KARABOGA D, BASTURK B On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008, (8): 687- 697
|
10 |
李文莉, 李郁侠, 任平安 基于云变异人工蜂群算法的梯级水库群优化调度[J]. 水力发电学报, 2014, 33 (1): 37- 42 LI Wen-li, LI Yu-xia, REN Ping-an Optimaloperatin of cascade reservoirs based on cloud variation-artificial bee colony algorithm[J]. Journal of Hydroelectric Engineering, 2014, 33 (1): 37- 42
|
11 |
钱坤, 苏国韶 人工蜂群算法在渠道断面优化设计中的应用[J]. 水利水电科技进展, 2011, 31 (3): 57- 60 QIAN Kun, SU Guo-shao Application of artificial bee colony algorithm to optimizationof channel section[J]. Advances in Science and Technology of Water Resources, 2011, 31 (3): 57- 60
|
12 |
黄文明, 徐双双, 邓珍荣, 等 改进人工蜂群算法优化RBF神经网络的短时交通流预测[J]. 计算机工程与科学, 2016, 38 (4): 713- 719 HUANG Wen-ming, XU Shuang-shuang, DENG Zhen-rong, et al Short-term traffic flow prediction of optimized RBF neural networks based on the modified ABC algorithm[J]. Computer Engineering and Science, 2016, 38 (4): 713- 719
doi: 10.3969/j.issn.1007-130X.2016.04.015
|
13 |
苏彩红, 向娜, 陈广义, 等 基于人工蜂群算法与BP神经网络的水质评价模型[J]. 环境工程学报, 2012, 6 (2): 699- 704 SU Cai-hong, XIANG Na, CHEN Guang-yi, et al Water quality evaluation model based on artificial bee colony algorithm and BP neural network[J]. Chinese Journal of Environmental Engineering, 2012, 6 (2): 699- 704
|
14 |
许贤杰, 周玲, 蒋丹, 等 基于人工蜂群算法计及线路故障的配电网网络重构[J]. 电测与仪表, 2014, 51 (3): 33- 36 XU Xian-jie, ZHOU Ling, JIANG Dan, et al Distribution network reconfiguration based on artificial bee colony algorithm and line fault[J]. Electrical Measurement and Instrumentation, 2014, 51 (3): 33- 36
doi: 10.3969/j.issn.1001-1390.2014.03.008
|
15 |
刘三阳, 张平, 朱明敏 基于局部搜索的人工蜂群算法[J]. 控制与决策, 2014, 29 (1): 123- 128 LIU San-yang, ZHANG Ping, ZHU Ming-min Artificial bee colony algorithm based on local search[J]. Control and Decision, 2014, 29 (1): 123- 128
|
16 |
罗钧, 李研 具有混沌搜索策略的蜂群优化算法[J]. 控制与决策, 2010, 25 (12): 1913- 1916 LUO Jun, LI Yan Artificial bee colony algoithm with chaotic-search strategy[J]. Control and Decision, 2010, 25 (12): 1913- 1916
|
17 |
暴励, 曾建潮 自适应搜索空间的混沌蜂群算法[J]. 计算机应用研究, 2010, 27 (4): 1330- 1334 BAO LI, ZENG Jian-chao Self-adapting search space chaos-artificial bee colony algorithm[J]. Application Research of Computers, 2010, 27 (4): 1330- 1334
|
18 |
姜鹏, 刘俊民, 黄一帆, 等 泾惠渠地下水对气候变化和人类活动的响应[J]. 人民黄河, 2014, 36 (5): 45- 47 JIANG Peng, LIU Jun-min, HUANG Yi-fan, et al Groundwater response to climate change and human activities in Jinghuiqu[J]. Yellow River, 2014, 36 (5): 45- 47
|
19 |
向娜. 基于神经网络和人工蜂群算法的水质评价和预测研究[D]. 广州: 华南理工大学, 2012. XIANG Na. Water quality evaluation and prediction based on neural network and artificial bee colony algorithm [D]. Guangzhou: South China University of Technology, 2012.
|
20 |
王晓慧, 刘雪英, 白梅花 引入高斯变异和最速下降算子的人口迁移算法[J]. 计算机工程与应用, 2009, 45 (20): 57- 60 WANG Xiao-hui, LIU Xue-ying, BAI Mei-hua Population migration algorithm with Gaussian mutation and the steepest descent operator[J]. Computer Engineering and Applications, 2009, 45 (20): 57- 60
doi: 10.3778/j.issn.1002-8331.2009.20.017
|
21 |
刘运, 程家兴, 林京 基于高斯变异的人工萤火虫算法在云计算资源调度中的研究[J]. 计算机应用研究, 2015, 32 (3): 834- 837 LIU Yun, CHENG Jia-xing, LIN Jing Study of artificial glowworm algorithm based on Gauss mutation in resource scheduling of cloud computing[J]. Application Research of Computers, 2015, 32 (3): 834- 837
doi: 10.3969/j.issn.1001-3695.2015.03.044
|
22 |
张京京. 渠井结合灌区地下水位动态对变化环境的响应及调控研究[D]. 杨凌: 西北农林科技大学, 2016. ZHANG Jing-jing. Groundwater dynamic response and regulation under variational environment in canal-well combined irrigation district [D]. Yangling: Northwest A&F University, 2016.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|