机械工程 |
|
|
|
|
基于微小通道波形扁管的圆柱电池液冷模组散热特性 |
闵小滕( ),唐志国*( ),高钦,宋安琪,王守成 |
合肥工业大学 机械工程学院,安徽 合肥 230009 |
|
Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube |
Xiao-teng MIN( ),Zhi-guo TANG*( ),Qin GAO,An-qi SONG,Shou-cheng WANG |
School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China |
引用本文:
闵小滕,唐志国,高钦,宋安琪,王守成. 基于微小通道波形扁管的圆柱电池液冷模组散热特性[J]. 浙江大学学报(工学版), 2019, 53(3): 463-469.
Xiao-teng MIN,Zhi-guo TANG,Qin GAO,An-qi SONG,Shou-cheng WANG. Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 463-469.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.007
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I3/463
|
1 |
SUI Z, WANG Z Technical and economic analysis of pure-electric vehicles based on the life-cycle cost theory[J]. International Conference on Business Management and Electronic Information, 2011, 1: 125- 129
|
2 |
袁世斐, 吴红杰, 殷承良 锂离子电池简化电化学模型: 浓度分布估计[J]. 浙江大学学报: 工学版, 2017, 51 (3): 478- 486 YUAN Shi-fei, WU Hong-jie, YIN Cheng-liang Simplified electrochemical model for Li-ion battery: lithium concentration estimation[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (3): 478- 486
|
3 |
SCROSATI B, HASSOUN J, SUN Y Lithium-ion batteries. A look into the future[J]. Energy and Environmental Science, 2011, 4 (9): 3287- 3295
|
4 |
AIFANTIS K, HACKNEY S, KUMAR R High energy density lithium batteries: materials, engineering, applications[J]. Wiley-VCH, 2010, 53- 80
|
5 |
PANCHAL S, DINCER I, AGELIN-CHAAB M, et al Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99: 204- 212
|
6 |
FENG X, LU L, OUYANG M, et al A 3D thermal runaway propagation model for a large format lithium-ion battery module[J]. Energy, 2016, 115 (1): 194- 208
|
7 |
WU B, YUFIT V, MARINESCU M, et al Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs[J]. Journal of Power Sources, 2013, 243 (6): 544- 554
|
8 |
GOGOANA R Internal resistance variances in lithium-ion batteries and implications in manufacturing[J]. Massachusetts Institute of Technology, 2012,
|
9 |
LIU R, CHEN J, XUN J, et al Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132 (11): 288- 297
|
10 |
PESARAN A Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110 (2): 377- 382
|
11 |
YE Y, SAW L, SHI Y, et al Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86: 281- 291
|
12 |
CHEN D, JIANG J, KIM G, et al Comparison of different cooling methods for lithium-ion battery cells[J]. Applied Thermal Engineering, 2016, 94: 846- 854
|
13 |
JARRETT A, KIM I Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196 (23): 10359- 10368
|
14 |
JARRETT A, KIM I Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245 (1): 644- 655
|
15 |
JIN L, LEE P, KONG X, et al Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113 (1): 1786- 1794
|
16 |
PENDERGAST D, DEMAURO E, FLETCHER M, et al A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources, 2011, 196 (2): 793- 800
|
17 |
ZHAO J, RAO Z, LI Y Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy Conversion and Management, 2015, 103: 157- 165
|
18 |
BASU S, HARIHARAN K, KOLAKE S, et al Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181: 1- 13
|
19 |
RAO Z, QIAN Z, KUANG Y, et al Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514- 1522
|
20 |
HERMANN W. Liquid cooling manifold with multi-function thermal interface: US20100104938A1[P]. 2012-09-11
|
21 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J A general energy-balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132 (1):
|
22 |
ZHANG Z, JIA L, ZHAO N, et al Thermal modeling and cooling analysis of high-power lithium-ion cells[J]. Journal of Thermal Sciences, 2011, 20 (6): 570- 575
|
23 |
HE F, LI X, MA L Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72 (9): 622- 629
|
24 |
MAHAMUD R, PARK C Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196 (13): 5685- 5696
|
25 |
WU M, LIU K, WANG Y, et al Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources, 2002, 109 (1): 160- 166
|
26 |
ZHU C, LI X, SONG L, et al Development of a theoretically based thermal model for lithium-ion battery pack[J]. Journal of Power Sources, 2013, 223 (1): 155- 164
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|