Please wait a minute...
浙江大学学报(工学版)
环境工程     
超声及高锰酸钾-超声协同降解水中17β-雌二醇的影响因素分析
唐凯1,  贾佳2, 邓靖1, 宋亚丽3, 李青松4
1. 浙江工业大学 建筑工程学院,浙江 杭州 310014;2. 浙江环科环境咨询有限公司,浙江 杭州 310007; 3. 浙江科技学院 建筑工程学院,浙江 杭州 310023;4.厦门理工学院 水资源环境研究所,福建 厦门 361005
Influencing factors analysis of 17β-estradiol degradation in aqueous system by ultrasound and KMnO4 combined with ultrasound
TANG Kai1, JIA Jia2, DENG Jing1, SONG Ya-li3, LI Qing-song4
1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China;2. Zhejiang HUANKE Environmental Consulting Co. Ltd., Hangzhou 310007, China; 3. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China;  4.  Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
 全文: PDF(1030 KB)   HTML
摘要:

运用超声和高锰酸钾-超声(KMnO4-超声)工艺协同降解饮用水中的17β-雌二醇(E2),比较了2种工艺去除E2的效果及高锰酸钾投加量、溶液pH值、水中常见阴阳离子和天然有机物(NOM)等因素对去除E2的影响,并利用叔丁醇验证了E2降解过程中羟基自由基(·OH)的作用.结果表明:超声对E2的降解效果不佳,反应60 min去除率仅为21.1%,KMnO4-超声可明显提高目标物的去除率至97.8%,KMnO4的协同作用随反应时间呈现先增强后减弱的趋势.酸碱性对超声和KMnO4-超声降解E2的效果存在影响,且影响规律不同,超声工艺的最佳pH值条件为强碱性,KMnO4-超声则在强酸性条件下具有最优去除效果;NaCl的存在能促进2种工艺对E2的去除效果;阴离子型表面活性剂十二烷基磺酸钠(SDBS)对2种工艺去除E2有促进作用;NOM可促进超声对E2的降解,对KMnO4-超声则有先促进后抑制的效果;叔丁醇对超声和KMnO4-超声均具有抑制作用,说明在超声工艺中 ·OH对E2的降解具有重要作用.相比较而言,高锰酸钾-超声协同降解E2具有降解效率高、节省处理时间和缩小工艺体积等优点.

Abstract:

Processes of ultrasound and KMnO4/ultrasound were adopted to remove 17β-estradiol (E2) from drinking water. Two techniques were compared in term of pollution control effect, and several influencing factors such as KMnO4 dosage, pH, common cation/anion and natural organic matter (NOM) were discussed. The hydroxyl radicals scavenger (tert-butyl alcohol) was used to figure out the main action of hydroxyl radicals in degradation of E2. Results show that ultrasound is ineffective in destruction of E2 with removal ratio of 21.1% after 60 min contact,however, KMnO4/ultrasound can enhance the ratio to 97.8% under the same condition. Synergistic effects of KMnO4 follows a trend of first strengthen and then weaken. As to influencing factors, acid-alkaline property has effect on E2 destruction and plays different roles in the ultrasound and KMnO4/ultrasound processes, respectively. Optimal pH condition for the ultrasound process is strong alkaline, while strong acid for the KMnO4/ultrasound process. Presence of NaCl or anionic surfactant sodium dodecyl benzene sulfonate the can promote the degradation of E2 in these two investigated processes. NOM accelerates the degradation of E2 by ultrasound, while to the KMnO4/ultrasound process, the effect is first promotion and then inhibition. Tert-butyl alcohol’s inhibition in removal of E2 by ultrasound and KMnO4/ultrasound indicates that the hydroxyl radicals play important role in the E2 degradation. The KMnO4/ultrasound process has the advantages of high degradation efficiency, short treating time and small size of process.

出版日期: 2015-04-01
:  TU 99  
基金资助:

浙江省自然科学基金资助项目(LQ12E08013);国家自然科学基金资助项目(51208468,51008261,51208469);浙江工业大学校基金重点资助项目(1101106040408);厦门市科技局资助项目(3502Z20131157, 3502Z20130039);江苏省环境科学与工程重点实验室开放基金资助项目(Zd131202).

通讯作者: 李青松,男,副研究员.     E-mail: leetsingsong@sina.com
作者简介: 唐凯(1988—),男,硕士生,从事饮用水安全保障技术研究.E-mail: kaitang57@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

唐凯, 贾佳, 邓靖, 宋亚丽, 李青松. 超声及高锰酸钾-超声协同降解水中17β-雌二醇的影响因素分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.06.024.

TANG Kai, JIA Jia, DENG Jing, SONG Ya-li, LI Qing-song. Influencing factors analysis of 17β-estradiol degradation in aqueous system by ultrasound and KMnO4 combined with ultrasound. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.06.024.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.06.024        http://www.zjujournals.com/eng/CN/Y2014/V48/I6/1132

[1] METCALFE C D, METCALFE T L, KIPANRISSIS Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes)[J]. Journal of Environmental Toxicology and Chemistry, 2001, 20 (2): 297-308.
[2] RUTISHAUSER B V, PESONEN M, ESCHER B I, et al. Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids[J]. Journal of Environmental Toxicology and Chemistry, 2004, 23(4): 857-864.
[3] ROUTLEDGE E J, SHEAHAN D, DESBROW C, et al. Identification of estrogenic chemicals in STW effluent. 2. in vivo responses in trout and roach[J]. Journal of Environmental Science and Technology, 1998, 32(11): 1559-1565.
[4] ZHANG Yan-ping, ZHOU J L. Removal of estrone and 17β-estradiol from water by adsorption [J]. Water Research, 2005, 39(16): 3991-4003.
[5] BENOTTI M J, TRENHOLM R A, VANDERFORD B J, et al. Pharmaceuticals and endocrine disrupting compounds in US drinking water [J]. Journal of Environmental Science & Technology, 2009, 43 (3): 597-603.
[6] KIM S D, CHO J, KIM I S, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters[J]. Water Research, 2007, 41 (5): 1013-1021.
[7] LABADIE P, BUDZINSKI H. Determination of steroidal hormone profiles along the Jalle d’Eysines River (near Bordeaux, France)[J]. Journal of Environmental Science & Technology, 2005, 39(14): 5113-5120.
[8] LOOS R. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water[J]. Water Research, 2010, 44(14): 4115-4126.
[9] EPA US, 2011. Drinking water contaminant candidate List 3[EB/OL].[2009-05-09]. http: ∥water.epa.gov/scitech/drinkingwater/dws/ccl/.
[10] WESTERHOFF P, YOON Y, SNYDER S, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes [J]. Environmental Science and Technology, 2005, 39(17): 6649-6663.
[11] CHEN C Y, WEN T Y, WANG G S, et al. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry[J]. Science of the Total Environment, 2007, 378(3): 352-365.
[12] YOON Y, WESTERHOFF P, SNYDER S A, et al. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products [J]. Journal of Membrane Science, 2006, 270(1/2): 88-100.
[13] MCCALLUM E A, HYUNG H, DO T A, et al. Adsorption, desorption, and steady-state removal of 17β-estradiol by nanofiltration membranes[J]. Journal of Membrane Science, 2008, 319(1/2): 38-43.
[14] 李青松,高乃云,马晓雁,等.TiO2光催化降解水中内分泌干扰物17β-雌二醇[J].环境科学,2007,28(1): 120124.
LI Qing-song, GAO Nai-yun, MA Xiao-yan, et al. Photocatalytic endocrine disruptor 17β-estradiol(E2) in water by TiO2[J]. Environmental Science, 2007, 28(1): 120-124.
[15] MAI Jia-xing,SUN Wei-ling,XIONG Lin, et al. Titanium dioxide mediated photocatalytic degradation of 17β-estradiol in aqueous solution [J].Chemosphere, 2008, 73(4): 600-606.
[16] ZHAO Ya-ping,HU Jiang-yong. Photo-Fenton degradation of 17β-estradiol in presence of α-FeOOHR and H2O2 [J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 250-258.
[17] 赵德明,张谭,张建庭,等.微波辅助二氧化氯氧化降解苯酚[J].化工学报,2011,63(7):2021-2025.
ZHAO De-ming, ZHANG Tan, ZHANG Jian-ting,et al. Degradation of phenol in water by microwave-assisted chlorine dioxide oxidation[J]. Journal of CIESC, 2011, 63(7): 2021-2025.
[18] THOMPSON L H, DORAISWAMY L K. Sonochemistry: science and engineering [J]. Industrial and Engineering Chemistry Research, 1999, 38(4): 1215-1249.
[19] ADEWUYI Y G. Sonochemistry: environmental science and engineering applications [J]. Industrial and Engineering Chemistry Research, 2001, 40(22): 4681-4715.
[20] MAHDI C, OUALID H, STEPHANE B,et al. Sonolytic degradation of endocrine disrupting chemical 4-cumylphenol in water [J]. Ultrasonics Sonochemistry, 2011, 18(5): 943-950.
[21] ROMINDER P S S, MOHAN N, UTHAPPA D, et al. Ultrasound assisted destruction of estrogen hormones in aqueous solution: Effect of power density, power intensity and reactor configuration[J]. Journal of Hazardous Materials, 2007, 146(3): 472-478.
[22] CAPOCELLI M, JOYCE E, LANCIA A, et al. Sonochemical degradation of estradiols: Incidence of ultrasonic frequency[J]. Chemical Engineering Journal, 2012, 210(1): 917.
[23] SURI R P S, FU H, CHIMCHIRIAN R. Ultrasound induced destruction of estrogen hormones in aqueous systems\[C\]∥ 1st European Conference on Environmental Applications of Advanced Oxidation Processes, Book of abstracts. Chania, Crete, Greece: \[s.n.\], 2006: 243.
[24] 何世传,朱昌平,单鸣雷,等.超声联合臭氧用于废水处理的研究进展[J].声学技术,2005,24(3): 173-177.
HE Shi-chuan, ZHU Chang-ping, SHAN Ming-lei, et al. Recent advances in wastewater treatment with ultrasonic-ozone method[J]. Technical Acoustics,2005,24(3): 173-177.
[25] 傅洵,许泳吉,解从霞.基础化学教程[M].北京:科学出版社,2007: 430-432.
[26] 邱立萍,王文科.超声波-高锰酸钾降解地下水中硝基苯的机理与效果[J].工业安全与环保,2012,38(1): 15.
QIU Li-ping, WANG wen-ke. Mechanism and efficiency of nitrobenzene degradation in underground water by ultrasound-potassium permanganate[J]. Industrial Safety and Environmental Protection, 2012, 38(1): 15.
[27] 黄君礼.水分析化学[M].北京:中国建筑工业出版社,2008: 139-157.
[28] SMITH M D, HILL E M. Uptake and metabolism of technical nonylphenol and its brominated analogues in the roach (Rutilus rutilus)[J]. Aquatic Toxicology, 2004, 69(4): 359-370.
[29] NILSUN H I, ISIL G, GOKCE T G. Sonochemical destruction of nonylphenol: Effects of pH and hydroxyl radical scavengers[J]. Journal of Hazardous Materials, 2009, 172(2/3): 739-743.
[30] SIDDIQUE M, FAROOQ R, KHAN M Z, et al. Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor[J]. Ultrasonics Sonochemistry, 2011, 18(1): 190-196.
[31] ALEBOYEH A, OLYA M E, ALEBOYEH H. Oxidative treatment of azodyes in aqueous solution by potassium permanganate[J]. Journal of Hazardous Materials,2008, 162(2/3): 1530-1535.
[32] SONG Ya-li, LI Ji-tai. Degradation of C.I. Direct Black 168 from aqueous solution by fly ash/H2O2 combining ultrasound [J]. Ultrasonics Sonochemistry, 2009, 16(4): 440-444.
[33] DAI You-zhi, LI Fen-fang, GE Fei, et al. Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron [J]. Journal of Hazardous Mterials, 2006, 37(3): 1424-1429.
[34] WAKEFORD C A, BLACKBUM R, LICKISS P D. Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide[J]. Ultrasonics Sonochemistry,199,6(3): 141-148.
[35] NORIO M, JOE Z S, PETER R. Correlation between sonochemistry of surfactant solutions and human leukemia cell killing by ultrasound and porphyrins[J]. Free Radical Biology and Medicine, 2003, 34(6): 710-719.
[36] NADDEO V, BELGIORNO V, NAPOLI R M A. Behaviour of natural organic matter during ultrasonic irradiation[J]. Desalination, 2007, 210(1-3): 175-182.
[37] CHEMAT F, TEUNISSEN P G M, CHEMAT S, et al. Sono-oxidation treatment of humic substances in drinking water[J]. Ultrasonics Sonochemistry, 2001, 8(3): 247-250.
[38] CHRISTL I, KRETZSCHMAR R. Relating ion binding by fulvic and humic acids to chemical composition andmolecular size: 1. Proton binding [J]. Environmental Science and Technology, 2001, 35(12): 2505-2511.
[39] XU Lei, XU Chao, ZHAO Mei-rong,et al. Oxidative removal of aqueous steroid estrogens by manganese oxides[J]. Water Research, 2008, 42(20): 5038-5044.
[40] ZHANG Zhong-bo, HU Jiang-yong. Effect of environmental factors on estrogenic compounds adsorption by MIP[J]. Water Air Soil Pollution, 2011, 210(1-4): 255-264.
[41] TAUBER A, MARK G, SCHUCHMANN H P, et al. Sonolysis of tert-butyl alcohol in aqueous solution[J]. Journal of the Chemical Society, Perkin Transactions, 1999, 2(6): 1129-1135.
[42] WANG Yan, ZHANG Hui, CHEN Lu, et al. Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor[J]. Separation and Purification Technology, 2012, 84: 138-146.

[1] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[2] 李素贞, 李翔. 水平定向穿越钢管回拖力的分析与实测[J]. 浙江大学学报(工学版), 2016, 50(4): 714-719.
[3] 李聪,赵敬国,杨玉龙,赵桃桃. 紫外线消毒对砂滤水中余氯及三卤甲烷的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[4] 柳景青, 罗志逢, 周晓燕, 何晓芳, 任红星, 胡宝兰, 裘尚德. 水流剪切力对供水管道管壁生物膜生长的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 250-256.
[5] 黄子硕, 于航, 彭震伟, 刘志渊. 面向社区能源规划的建筑总能系统模型[J]. 浙江大学学报(工学版), 2016, 50(2): 292-298.
[6] 柳景青,郭东进,叶萍. 改进的给水管网节点K均值空间聚类[J]. 浙江大学学报(工学版), 2015, 49(11): 2128-2134.
[7] 杨艳, 张土乔, 刘伟超. 给水管网负压引起污染物入侵的流量计算方法[J]. 浙江大学学报(工学版), 2015, 49(7): 1262-1267.
[8] 蒋伟, 柳景青, 叶萍, 李杭加. 氧化还原电位作为铁释放监测参数的中试研究[J]. 浙江大学学报(工学版), 2015, 49(4): 769-775.
[9] 张仪萍, 李亮, 王思照. 透明土中孔隙流体的实验研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1828-1834.
[10] 何忠华,袁一星. 基于剩余能量熵的供水管网可靠性优化设计[J]. 浙江大学学报(工学版), 2014, 48(7): 1188-1194.
[11] 邵卫云, 马妍, 周永潮, 杜旭, 关垚. 生物作用下排水管道沉积物的冲蚀特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1075-1079.
[12] 叶肖伟,张小明,倪一清,黄启远,樊可清. 基于机器视觉技术的桥梁挠度测试方法[J]. 浙江大学学报(工学版), 2014, 48(5): 813-819.
[13] 高玖藜, 柳景青, 张土乔, 李聪, 蒋伟. 水中氯离子和腐植酸对管网铁释放的影响[J]. J4, 2013, 47(8): 1321-1328.
[14] 虞介泽,李聪,张土乔,毛欣炜. 改进的水质服务水平与加氯费用优化分析[J]. J4, 2013, 47(7): 1140-1147.
[15] 程伟平, 赵丹丹, 许刚, 蒋建群1. 供水管网爆管水力学模型与爆管定位[J]. J4, 2013, 47(6): 1057-1062.