Please wait a minute...
浙江大学学报(工学版)
土木工程、建筑工程     
透明土中孔隙流体的实验研究
张仪萍, 李亮, 王思照
浙江大学 建筑工程学院,浙江 杭州 310058
Experimental study on pore fluid for forming transparent soil
ZHANG Yi-ping, LI Liang, WANG Si-zhao
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(833 KB)   HTML
摘要:

在透明土配置中,为了选择与熔融石英砂相匹配的孔隙流体,通过实验研究CaBr2溶液、CaCl2·2(H2O)溶液和白矿物油混合物3种孔隙流体.研究孔隙流体折射率随温度和质量分数(或体积比)的变化规律,测定了3种孔隙流体的黏度和平均色散值等物理性质.实验结果表明,3种孔隙流体的折射率均随温度的升高而线性降低,无机盐溶液的折射率与质量分数呈线性关系,质量分数越高,折射率越大,白矿油混合后的折射率与混合体积比有关,可以用Arago-Biot方程描述.黏度以CaCl2·2(H2O)溶液为最大,CaBr2溶液最小.色散值以白矿物油为最小.总结了筛选孔隙流体的一般性原则,认为白矿物油的安全性最好.

Abstract:

Three kinds of pore fluid, including the solution of CaBr2, CaCl2·2(H2O) and white mineral oil mixture, were analyzed by experiments in order to choose the pore fluid for matching the fused quartz sand in transparent soil. The refractive index variations with temperature and mass fraction as well as viscosity and mean dispersion of the candidate fluid were tested. Results show that the relationship between refractive index and temperature or mass fraction is linear. When temperature rises the refractive index goes down, while it occurs reverse when mass fraction rises. The data fitting shows the refractive index of white mineral oil after the mixture fit the Arago-Biot equation. The viscosity of CaCl2·2(H2O) solution is the highest, while the CaBr2 solution is the lowest. For the mean dispersion, the white mineral oil shows the smallest variation. Then the general principles for choosing the candidate fluid for the transparent soil were concluded. Results show that the white mineral is the safest.

出版日期: 2014-10-01
:  TU 99  
基金资助:

浙江省重点科技创新团队资助项目(2010R50037).

作者简介: 张仪萍(1973—),男,教授,从事软基处理、市政基础工程等的研究. E-mail: zhangyiping@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张仪萍, 李亮, 王思照. 透明土中孔隙流体的实验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.10.017.

ZHANG Yi-ping, LI Liang, WANG Si-zhao. Experimental study on pore fluid for forming transparent soil. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.10.017.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.10.017        http://www.zjujournals.com/eng/CN/Y2014/V48/I10/1828

[1] ANDREA L, WELKER J J B R. Applied research using a transparent material with hydraulic properties similar to soil [J]. Geotechnical Testing Journal, 1999, 22(3): 266-270.
[2] SADEK S, ISKANDER M G, LIU J Y. Geotechnical properties of transparent silica [J]. Canadian Geotechnical Journal, 2002, 39(1): 111-124.
[3] ISKANDER M G, LIU J Y, SADEK S. Transparent amorphous silica to model clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 262-273.
[4] TABE K. Aquabeads to model the geotechnical behavior of natural soils [D]. New York: New York University, 2009.
[5] SADEK S, ISKANDER M G, LIU J Y. Accuracy of digital image correlation for measuring deformations in transparent media [J]. Journal of Computing in Civil Engineering, 2003, 17(2): 88-96.
[6] NI Q, HIRD C C, GUYMER I. Physical modelling of pile penetration in clay using transparent soil and. particle image velocimetry [J]. Geotechnique, 2010, 60(2): 121-132.
[7] LIU J Y, ISKANDER M G. Modeling capacity of transparent soil [J]. Canadian Geotechnical Journal, 2010, 47(4): 451-460.
[8] ZHAO H. Development and assessment of transparent soil and particle image velocimetry in dynamic soil-structure interaction [D]. Rolla: University of Missouri-Rolla, 2007.
[9] AHMED M, ISKANDER M. Analysis of tunneling-induced ground movements using transparent soil models [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5): 525-535.
[10] 吴明喜. 人工合成透明砂土及其三轴试验研究[D]. 大连:大连理工大学, 2006.
WU Ming-xi. Study on transparent synthetic soil and its triaxial test [D]. Dalian: Dalian University of Technology, 2006.
[11] 佘跃心. 基于透明介质和颗粒图像技术的土体变形测量研究进展[J]. 勘察科学技术, 2005(6): 710.
SHE Yue-xin. Research progress in soil deformation measurement using transparent media and particle image velocimetry [J]. Site Investigation Science and Technology, 2005(6): 710.
[12] 孙吉主,肖文辉. 基于透明土的盾构隧道模型试验设计研究[J]. 武汉理工大学学报, 2011,33(5): 108-112.
XUN Ji-zhu, XIAO Wen-hui. Design on model test of shield tunneling in transparent soil [J]. Journal of Wuhan University of Technology, 2011, 33(5): 108-112.
[13] 赵红华,葛玉宁,李鹏飞. 粒子测速技术和透明土在土与结构动力相互作用研究中的应用[J]. 西北地震学报, 2011, 33(增1): 148-154.
ZHAO Hong-hua, GE Yu-ning, LI Peng-fei. Application of PIV and transparent soil in the study of the dynamic soil-structure interaction [J]. Northwestern Seismological Journal, 2011, 33(suppl.1): 148-154.
[14] CAO Z, LIU H, LIU J. Transparent fused silica to model natural sand [C]∥2011 Pan-Am CGS Geotechnical Conference. Toronto: Canadian Geotechnical Society (CGS), 2011.
[15] WELKER A L, BOWDERS J J, GILBERT R B. Applied research using a transparent material with hydraulic properties similar to soil [J]. Geotechnical Testing Journal, 1999, 22(3): 266-270.
[16] LIU J Y, ISKANDER M G, SADEK S. Consolidation and permeability of transparent amorphous silica [J]. Geotechnical Testing Journal, 2003, 26(4): 390-401.
[17] GUZMAN I L, ISKANDER M. Geotechnical properties of sucrose-saturated fused quartz for use in physical modeling [J]. Geotechnical Testing Journal, 2013, 36(3): 448-454.
[18] VERKOUTEREN J R, LEIGH S D. New low-index liquid refractive index standard: SRM 1922 [J]. Fresenius’ Journal of Analytical Chemistry, 2000, 367(3): 226-231.
[19] AMINI N, HASSAN Y A. An investigation of matched index of refraction technique and its application in optical measurements of fluid flow [J]. Experiments in Fluids, 2012, 53(6): 2011-2020.
[20] DIJKSMAN J A, RIETZ F, LORINEZ K A, et al. Invited article: refractive index matched scanning of dense granular materials \[J\]. Review of Scientific Instruments, 2012, 83: 0113011.
[21] SAEED W R, DISTANTE S, HOLMES J D, et al. Skin injuries afflicting three oil workers follwing contact with calcium bromide and/or calcium chloride [J]. Burns, 1997, 23(7/8): 634637.
[22] NASH J F, GETTINGS S D, DIEMBECK W, et al. A toxicological review of topical exposure to white mineral oils [J]. Food and Chemical Toxicology, 1996, 34(2): 213-225.
 
[1] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[2] 李素贞, 李翔. 水平定向穿越钢管回拖力的分析与实测[J]. 浙江大学学报(工学版), 2016, 50(4): 714-719.
[3] 李聪,赵敬国,杨玉龙,赵桃桃. 紫外线消毒对砂滤水中余氯及三卤甲烷的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[4] 柳景青, 罗志逢, 周晓燕, 何晓芳, 任红星, 胡宝兰, 裘尚德. 水流剪切力对供水管道管壁生物膜生长的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 250-256.
[5] 黄子硕, 于航, 彭震伟, 刘志渊. 面向社区能源规划的建筑总能系统模型[J]. 浙江大学学报(工学版), 2016, 50(2): 292-298.
[6] 柳景青,郭东进,叶萍. 改进的给水管网节点K均值空间聚类[J]. 浙江大学学报(工学版), 2015, 49(11): 2128-2134.
[7] 杨艳, 张土乔, 刘伟超. 给水管网负压引起污染物入侵的流量计算方法[J]. 浙江大学学报(工学版), 2015, 49(7): 1262-1267.
[8] 蒋伟, 柳景青, 叶萍, 李杭加. 氧化还原电位作为铁释放监测参数的中试研究[J]. 浙江大学学报(工学版), 2015, 49(4): 769-775.
[9] 何忠华,袁一星. 基于剩余能量熵的供水管网可靠性优化设计[J]. 浙江大学学报(工学版), 2014, 48(7): 1188-1194.
[10] 邵卫云, 马妍, 周永潮, 杜旭, 关垚. 生物作用下排水管道沉积物的冲蚀特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1075-1079.
[11] 唐凯, 贾佳, 邓靖, 宋亚丽, 李青松. 超声及高锰酸钾-超声协同降解水中17β-雌二醇的影响因素分析[J]. 浙江大学学报(工学版), 2014, 48(6): 1132-1140.
[12] 叶肖伟,张小明,倪一清,黄启远,樊可清. 基于机器视觉技术的桥梁挠度测试方法[J]. 浙江大学学报(工学版), 2014, 48(5): 813-819.
[13] 高玖藜, 柳景青, 张土乔, 李聪, 蒋伟. 水中氯离子和腐植酸对管网铁释放的影响[J]. J4, 2013, 47(8): 1321-1328.
[14] 虞介泽,李聪,张土乔,毛欣炜. 改进的水质服务水平与加氯费用优化分析[J]. J4, 2013, 47(7): 1140-1147.
[15] 程伟平, 赵丹丹, 许刚, 蒋建群1. 供水管网爆管水力学模型与爆管定位[J]. J4, 2013, 47(6): 1057-1062.