Please wait a minute...
J4  2011, Vol. 45 Issue (4): 741-746    DOI: 10.3785/j.issn.1008-973X.2011.04.025
机械工程、能源工程     
大流量液压系统的油温控制
冯斌, 龚国芳, 杨华勇
浙江大学 流体传动及控制国家重点实验室,浙江 杭州 310027
Oil temperature control of large hydraulic system
FENG Bin, GONG Guo-fang, YANG Hua-yong
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对某大型液压系统的油温恒定需求,分析系统发热的数学模型和油液温度变化的滞后特性,提出一套运用比例水阀连续调节板式换热器冷却水量的大型液压系统油温控制方法.在Matlab/Simulink仿真环境中,比较分析使用常规PID和参数自整定模糊PID算法的油温控制特性.仿真结果表明,模糊PID控制器具有不依赖系统模型、响应快、控制精度高的优点,且易于PLC实现.将模糊PID控制方案应用于实际系统中,实验结果表明,参数自整定模糊PID控制器能够克服油温的大时滞、非线性变化,使得油液温度有效控制在45±1 ℃;参数自整定模糊PID控制器的响应速度、控制精度均优于常规PID,适合应用于大流量液压系统的油温控制.

Abstract:

A temperature control system was proposed employing proportional valve to regulate cooling water flow through a plate heat exchanger in order to retain the constant oil temperature in a large hydraulic system. Characterizing large time delay, the mathematic model of temperature variation was conducted based on laws of thermodynamics. The conventional PID control algorithm was compared with the fuzzy PID by using Matlab/Simulink. Simulation results show that the fuzzy PID strategy is independent on system model, and can efficiently improve the performance, which is easily realized with PLC. Fuzzy PID strategy was employed in the real system. Results show that the fuzzy PID controller can reach control accuracy of 45±1 ℃ under variant working conditions, which is irrespective of time delay problem and parameter variations. Compared with conventional PID controller, the fuzzy PID controller can achieve higher control accuracy, faster response and stronger robustness in oil temperature control of large hydraulic system.

出版日期: 2011-05-05
:  TH 137  
基金资助:

国家“973”重点基础研究发展规划资助项目(2007CB714004); 国家自然科学基金资助项目(50975252).

通讯作者: 龚国芳,男,教授.     E-mail: gfgong@zju.edu.cn
作者简介: 冯斌(1984—),男,浙江衢州人,博士生,从事电液控制技术研究. E-mail: abbottfeng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

冯斌, 龚国芳, 杨华勇. 大流量液压系统的油温控制[J]. J4, 2011, 45(4): 741-746.

FENG Bin, GONG Guo-fang, YANG Hua-yong. Oil temperature control of large hydraulic system. J4, 2011, 45(4): 741-746.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.04.025        http://www.zjujournals.com/eng/CN/Y2011/V45/I4/741

[1] 路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002: 682700.[2] 张立军,刘克铭.一种油温自动控制方法在液压缸实验台中的应用[J].液压与气动,2008(2): 56-59.
ZHANG Lijun, LIU Keming. The application of oil temperature control method for cylinder stand [J]. Chinese Hydraulics and Pneumatics, 2008(2): 56-59.
[3] 刘晓红,柯坚刘,桓龙.液压滑阀径向间隙温度场的CFD研究[J].机械工程学报,2006,42(5): 231-234.
LIU Xiaohong, KE Dianliu, HUAN Long. CFD research on temperature field in radial clearance of hydraulic spool valve [J]. Chinese Journal of Mechanical Engineering, 2006, 42(5): 231-234.
[4] 陈绍.液压实验台油温智能控制技术研究[J].化学工程与装备,2009(2): 38-40.
CHEN Shao. Research on intelligent temperature control in hydraulic test system [J]. Chemical Engineering and Equipment, 2009(2): 38-40.
[5] 王静,秦文波,龚国芳,等.大流量高性能液压系统的若干关键技术研究[J].浙江大学学报:工学版,2009,43(7): 1264-1268.
WANG Jing, QIN Wenbo, GONG Guofang, et al. Several key technologies of hydraulic system with high flow and high performance [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(7): 1264-1268.
[6] 张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.
[7] HA Q, NGUYEN Q, RYE D, Fuzzy slidingmode controllers with applications [J]. IEEE Transactions on Industrial Electronics, 2001, 48(1): 38-46.
[8] 崔颖.基于Smith预估器的模糊PID控制方法研究[D].大连:大连理工大学,2005: 2-15.
CUI Ying. Research on fuzzy PID methods based on Smith predictor [D]. Dalian: Dalian University of Technology, 2005: 2-15.
[9] 李林欢,刘斌,苏宏业,等.基于输出误差预测的模糊预测PID控制及应用[J].浙江大学学报:工学版,2004,38(7): 826-830.
LI Linhuan, LIU Bin, SU Hongye, et al. Fuzzy predictive PID controller based on outputerror prediction and its application [J]. Journal of Zhejiang University :Engineering Science, 2004, 38(7): 826-830.
[10] XU Jianxin, HANG C, LIU C. Parallel structure and tuning of a fuzzy PID controller [J]. Automatica, 2000, 36(5): 673-684.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[7] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[8] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[9] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[10] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[11] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[12] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[13] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[14] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[15] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.