Please wait a minute...
J4  2011, Vol. 45 Issue (4): 734-740    DOI: 10.3785/j.issn.1008-973X.2011.04.024
机械工程、能源工程     
微通道热沉几何结构的多参数反问题优化
林林, 吴睿, 张欣欣
北京科技大学 热能工程系,北京 100083
Optimization for geometric parameters of micro-channel heat sink
using inverse problem method
LIN Lin, WU Rui, ZHANG Xin-xin
Department of Thermal Engineering, University of Science and Technology Beijing, Beijing 100083, China
 全文: PDF  HTML
摘要:

提出微通道热沉几何结构的多参数反问题优化方法,其正向求解器是微通道热沉三维数值模型,反向求解器为简化的共轭梯度法,分析泵功的变化对热沉几何结构的影响.结果表明,在热沉换热面积和热表面热流密度恒定的条件下,随着泵功的增加,相应的最优热沉几何结构参数随之变化,即最优热沉的流道数和流道高宽比增加,流道比降低;泵功的增加使最优热沉的全局热阻降低,但在高泵功下全局热阻的降低幅度远低于在低泵功下的降低幅度.

Abstract:

A multi-parameters optimization approach was developed to search for the optimal geometric design for microchannel heat sink by integrating the simplified conjugate-gradient scheme into a fully three-dimensional heat transfer flow model. The effect of the pumping power on the micro-channel heat sink geometry was analyzed. With the constant heat flux passing through a given bottom surface of heat sink, the higher pumping power may induce the variation of the optimal geometric structure parameters such as the reduction of the width ratio of the channel-to-pitch along with the increase of the channel number of the heat sink and the aspect ratio. The global thermal resistance of the optimal heat sink can be decreased by increasing the pumping power, but the corresponding reduced amplitude is much smaller than that caused by lower pumping power.

出版日期: 2011-05-05
:  TK 91  
基金资助:

 国家自然科学基金资助项目(50836001).

作者简介: 林林(1968—),男,吉林市人,副教授,从事节能技术、相变传热与微尺度换热研究. Email:linlin@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林林, 吴睿, 张欣欣. 微通道热沉几何结构的多参数反问题优化[J]. J4, 2011, 45(4): 734-740.

LIN Lin, WU Rui, ZHANG Xin-xin. Optimization for geometric parameters of micro-channel heat sink
using inverse problem method. J4, 2011, 45(4): 734-740.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.04.024        http://www.zjujournals.com/eng/CN/Y2011/V45/I4/734

[1] TUCKERMAN D B, PEASE R F W. Highperformance heat sinking for VLSI [J]. IEEE Electron Device Letter EDL2, 1981: 126-129.
[2] LI J, PETERSON G P, CHENG P. Threedimensional analysis of heat transfer in a micro heat sink with single phase flow [J]. International Journal of Heat and Mass Transfer, 2004, 47(19/20): 4215-4231.
[3] RYU J H, CHOI D H, KIM S J. Numerical optimization of the thermal performance of a microchannel heat sink [J]. International Journal Heat and Mass Transfer, 2002, 45(13): 2823-2827.
[4] CHEN C W, LEE J J, KOU H S. Optimal thermal design of microchannel heat sinks by the simulated annealing method [J]. International Communications in Heat and Mass Transfer, 2008, 35(8): 980-984.
[5] CHEIN R, CHEN J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance [J]. International Journal of Thermal Sciences, 2009, 48(8): 1627-1638.
[6] KAWANO K, MINAKAMI K, IWASAKH I, et al. Development of micro channels heat exchanging [J]. JSME International Journal, 2001, 44(4): 592-598.
[7] QU W, MUDAWAR I. Experimental and numerical study of pressure drop and heat transfer in a singlephase microchannel heat sink [J]. International Journal of Heat and Mass Transfer, 2002, 45(12): 2549-2565.
[8] TISELJ I, HETSRONI G, MAVKO B, et al. Effect of axial conduction on the heat transfer in microchannels [J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2551-2565.
[9] LEE P, GARIMELLA S V, LIU D. Investigation of heat transfer in rectangular microchannels [J]. International Journal of Heat and Mass Transfer, 2005, 48(9): 1688-1704.
[10] WEISBERG A, BAU H H, ZEMEL J N. Analysis of microchannels for integrated cooling [J]. International Journal of Heat and Mass Transfer, 1992, 35(10): 2465-2474.
[11] HWANG L T, TURLIK I, REISMAN A. Thermal module design for advancing packaging [J]. Journal of Electronic Materials, 1987, 16(5): 347-355.
[12] KNIGHT R W, GOODLING J S, HALL D J. Optimal thermal design of forced convection heat sinksanalytical [J]. Journal of Electronic Packaging, 1991, 113(3): 313-321.
[13] KNIGHT R W, HALL D J, GOODLING J S, et al. Heat sink optimization with application to micro channels [J]. IEEE Transactions on Components Hybrids and Manufacturing Technology, 1992, 15(5): 832-842.
[14] WEN Z, CHOO K F. Optimum thermal design of microchannel heat sinks [C]∥ IEEE/CPMT Electronic Packaging Technology Conference. Singapore: IEEE, 1997: 23-129.
[15] CHEIN R, CHEN J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance [J]. International Journal of Thermal Sciences, 2009, 48(8): 1627-1638.
[16] LI J, PETERSON G P. Geometric optimization of a micro heat sink with liquid flow [J]. IEEE Transactions on Components and Packaging Technology, 2006, 29(1): 145-154.
[17] LI J, PETERSON G P. 3dimensional numerical optimization of siliconbase high performance parallel microchannel heat sink with liquid flow [J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 2895-2904.
[18] BELLOOCHENDE T, LIEBENBERG L, MEYER J P. Constructal cooling channels for microchannel heat sinks [J]. International Journal of Heat and Mass Transfer, 2007, 50(21/22): 4141-4150.
[19] KOU H S, LEE J J, CHEN C W. Optimum thermal performance of microchannel heat sink by adjusting channel width and height [J]. International Communications in Heat and Mass Transfer, 2008, 35(5):577-582.
[20] WANG X D, HUANG Y X, CHENG C H, et al. An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell [J]. International Journal of Hydrogen Energy, 2010, 35(9): 4247-4257.

[1] 朱俏俏, 王智化, 杨剑, 张彦威, 周俊虎, 岑可法. 硫碘制氢中碘量对Bunsen反应影响的实验研究[J]. J4, 2011, 45(10): 1786-1790.
[2] 钱淼, 梅德庆, 刘宾虹, 陈子辰. 微凸台阵列型重整微反应器的传热传质特性[J]. J4, 2011, 45(8): 1387-1392.
[3] 杨剑,王智化,张彦威,陈云,周俊虎,岑可法. 热化学硫碘开路循环制氢系统的设计与模拟[J]. J4, 2011, 45(5): 869-877.