Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (2): 289-298    DOI: 10.3785/j.issn.1008-973X.2021.02.009
机械工程     
生物3D打印装置及打印模型形貌检测
白大鹏1(),张斌1,*(),洪昊岑1,李洋1,季清华2,杨华勇1
1. 浙江大学 机械工程学院 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 浙江大学滨海产业技术研究院,天津 300450
Biological 3D printer and topography detection of printing model
Da-peng BAI1(),Bin ZHANG1,*(),Hao-cen HONG1,Yang LI1,Qing-hua JI2,Hua-yong YANG1
1. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300450, China
 全文: PDF(2075 KB)   HTML
摘要:

为了能够实时观测生物3D打印全过程,并对打印模型的形貌进行检测及重建,设计集成式生物3D打印机检测系统. 通过开发具备视频监测功能的打印喷头,实现对打印模型的在线检测. 采用色散共焦位移测量技术,通过对打印模型XY轴的位置信息及Z轴的高度信息进行扫描得到测量数据,并结合MountainsMap实现打印模型的形貌重建. 使用LabVIEW完成上位机操作系统的设计,建立G-code与打印模型的映射关系,实现打印轨迹的可视化,确保在程序运行到当前代码段时打印模型的准确性. 通过实验验证生物3D打印机的在线检测功能,对网格状及凸台模型的表面进行形貌检测,结果表明检测系统能够实现对打印模型的形貌检测. 打印模型表面形貌特征的可视化数据为构建精准打印模型提供数据支持,计算机视觉技术为高精度生物3D打印提供有效的检测手段.

关键词: 生物3D打印模型检测检测技术形貌重建可视化    
Abstract:

An integrated biological 3D printer inspection system was designed in order to observe the printing process of 3D biological printer in real time as well as detect and reconstruct the surface topography of printing model. The online inspection of printing model was realized based on the printing needles with video monitoring. The dispersion confocal displacement measurement technology was adopted to measure the position information of X-axis and Y-axis and the height information of Z-axis. The topography reconstruction work of printing model was processed by MountainsMap. The upper computer operating system was developed by LabVIEW, in which the printing model was mapped with G-code to visualize printing track to ensure the accuracy of the printing model when the program runs to the current code segment. The online real-time detecting function of the proposed biological 3D printer was verified by experiments, and the surface topography detection of grid shaped and convex shaped models was conducted respectively. Results show that the surface topography information of printing model can be reconstructed by the detection system. The visualization data of the surface topography features of the printing model provides data support for the construction of accurate printing models, and the computer vision technology provides an effective detection method for high-precision biological 3D printing.

Key words: biological 3D printing    model detection    detection technology    surface topography reconstruction    visualization
收稿日期: 2020-08-08 出版日期: 2021-03-09
CLC:  TH 122  
基金资助: 国家重点研发计划资助项目(2018YFA0703000)
通讯作者: 张斌     E-mail: bdp.2008@163.com;zbzju@163.com
作者简介: 白大鹏(1982—),男,博士后,从事生物3D打印装备与机电系统研究. orcid.org/0000-0002-3549-8940. E-mail: bdp.2008@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
白大鹏
张斌
洪昊岑
李洋
季清华
杨华勇

引用本文:

白大鹏,张斌,洪昊岑,李洋,季清华,杨华勇. 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报(工学版), 2021, 55(2): 289-298.

Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.009        http://www.zjujournals.com/eng/CN/Y2021/V55/I2/289

图 1  生物3D打印机结构组成
图 2  生物3D打印机运动系统
图 3  生物3D打印机供料系统
图 4  生物3D打印机温控系统
图 5  低温打印喷头结构
图 6  高温打印喷头结构
图 7  打印平台温控系统结构原理图
传感器类型 优点 缺点
激光测量 测量速度快,模块小,可拆卸安装,测量精度为亚毫米级 采用三角测量原理,不能测量透明材料
白光干涉 直接照射测量物体,可以快速得到局部轮廓模型,微米级精度 测量范围极小,不可拆卸和二次开发,价格昂贵
色散共焦 可以测量任何材料物体,探头可以集成和二次开发,理论精度为纳米级 点测量方式,测量效果和测量速度有关,一般测量速度慢
表 1  非接触式位移传感器优、缺点对比
图 8  视觉检测系统方案
图 9  生物3D打印机控制系统
图 10  模块之间通信示意图
图 11  三维数据获取原理图
图 12  扫描程序流程图
图 13  数据采集程序流程图
图 14  生物3D打印机上位机控制界面
图 15  生物3D打印机各功能模块
图 16  视觉检测试验流程
d /mm s1 /(mm·s?1 s2 /(mm·s?1 θ1 /°C θ2 /°C
0.34 10 15 27 10
表 2  打印试验条件及参数
图 17  生物3D打印机监控软件界面
图 18  打印网格支架结果
图 19  网格支架三维重建模型
图 20  网格支架位移彩虹云图
图 21  网格支架截面图
图 22  网格支架截面轮廓曲线
区域 Δx /mm Δz /μm
区域1、2 0.491 4.95
区域3、4 0.519 3.77
区域5、6 0.422 3.21
表 3  网格支架截面高度数据
区域 h /mm
区域0~2 0.94
区域2~4 1.04
区域4~6 0.99
表 4  网格支架实际打印距离
图 23  打印出的凸台结构
图 24  凸台结构三维重建模型
图 25  凸台结构位移彩虹云图
图 26  凸台结构截面图
图 27  凸台结构截面轮廓曲线
1 JANG J, YI H G, CHO D W 3D printed tissue models: present and future[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1722- 1731
doi: 10.1021/acsbiomaterials.6b00129
2 PEI P, QI X, DU X, et al Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration[J]. Journal of Materials Chemistry B, 2016, 4 (46): 7452- 7463
doi: 10.1039/C6TB02055K
3 MURPHY S V, ATALA A 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32 (8): 773- 785
doi: 10.1038/nbt.2958
4 贺永, 高庆, 刘安, 等 生物3D打印: 从形似到神似[J]. 浙江大学学报: 工学版, 2019, 53 (3): 6- 18
HE Yong, GAO Qing, LIU An, et al 3D bioprinting: from structure to function[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 6- 18
5 PARIENTE J L, KIM B S, ATALA A In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells[J]. Journal of Biomedical Materials Research, 2001, 55 (1): 33- 39
doi: 10.1002/1097-4636(200104)55:1<33::AID-JBM50>3.0.CO;2-7
6 LIU W, ZHANG Y S, HEINRICH M A, et al Rapid continuous multimaterial extrusion bioprinting[J]. Advanced Materials, 2017, 29 (3): 1- 8
7 PARK J H, JANG J, LEE J S, et al Three-dimensional printing of tissue/organ analogues containing living cells[J]. Annals of Biomedical Engineering, 2017, 45 (1): 180- 194
doi: 10.1007/s10439-016-1611-9
8 KING S M, PRESNELL S C, NGUYEN D G Abstract 2034: development of 3D bioprinted human breast cancer for in vitro drug screening[J]. Cancer Research, 2014, 74 (Suppl.19): 2034
9 YAO R, XU G, MAO S S, et al Three-dimensional printing: review of application in medicine and hepatic surgery[J]. Cancer Biology and Medicine, 2016, 13 (4): 443- 451
doi: 10.20892/j.issn.2095-3941.2016.0075
10 HE J K, ZHAO X, CHANG J K, et al Microscale electro-hydrodynamic cell printing with high viability[J]. Small, 2017, 13 (47): 1- 9
11 杜显彬, 徐铭恩, 王玲, 等 基于同轴流技术的肝组织生物3D打印研究[J]. 中国生物医学工程学报, 2018, 37 (6): 731- 738
DU Xian-bin, XU Ming-en, WANG Ling, et al Study on 3D bioprinting of liver tissues based on coaxial flow technique[J]. Chinese Journal of Biomedical Engineering, 2018, 37 (6): 731- 738
doi: 10.3969/j.issn.0258-8021.2018.06.012
12 SITTHI-AMORN P, RAMOS J E, WANG Y, et al Multi fab: a machine vision assisted platform for multi-material 3D printing[J]. ACM Transactions on Graphics, 2015, 34 (4): 1- 11
13 DINWIDDIE R B, LOVE L J, ROWE J C. Real-time process monitoring and temperature mapping of a 3D polymer printing process [C]// SPIE Defense, Security, and Sensing. Baltimore: [s.n.], 2013: 1-9.
14 WU M T, PHOHA V V, MOON Y B, et al. Detecting malicious defects in 3D printing process using machine learning and image classification [C]// ASME International Mechanical Engineering Congress and Exposition. Phoenix: AMSE, 2016: 1-6.
15 SHEN H, SUN W, FU J Multi-view online vision detection based on robot fused deposit modeling 3D printing technology[J]. Rapid Prototyping Journal, 2019, 25 (2): 343- 355
doi: 10.1108/RPJ-03-2018-0052
16 ZHANG B, LUO Y C, MA L, et al 3D bioprinting: an emerging technology full of opportunities and challenges[J]. Bio-Design and Manufacturing, 2018, 1 (1): 2- 13
doi: 10.1007/s42242-018-0004-3
[1] 黄钰期,陈卓烈,胡军强,李梅,牛昊一. 活塞内冷油腔两相流振荡可视化模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 435-441.
[2] 扶建辉,王进,陆国栋,JUNGYoong-ho. 基于体素的汽车装配体漏水缝隙识别与可视化[J]. 浙江大学学报(工学版), 2020, 54(2): 357-364.
[3] 任思源,郭斌,张曼,岳超刚,李青洋,於志文. 寄递大数据城市画像[J]. 浙江大学学报(工学版), 2019, 53(9): 1779-1787.
[4] 贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.
[5] 沙东辉,骆仲泱,鲁梦诗,江建平,方梦祥,周栋,陈浩. 带正电颗粒电凝并的显微可视化研究[J]. 浙江大学学报(工学版), 2016, 50(1): 93-101.
[6] 方锡武,刘振宇,谭建荣,程丰备. 异构有限元网格多场信息的等效集成方法[J]. 浙江大学学报(工学版), 2014, 48(6): 973-879.
[7] 刘芳, 孙芸, 杨庚, 林海. 基于粒子群优化算法的社交网络可视化[J]. J4, 2013, 47(1): 37-43.
[8] 欧海英, 李晓宇, 付战平. 设计优化中的非线性主轴降维映射法[J]. J4, 2010, 44(1): 87-93.
[9] 吴培宁 谭建荣 刘振宇 冯义雄. 基于Voronoi图的环评等值线快速拓扑填充[J]. J4, 2009, 43(2): 321-327.
[10] 刁现芬 陈思平 梁长虹 汪元美. 基于阈值区间的水平集算法在耳蜗分割中的应[J]. J4, 2006, 40(2): 262-266.