Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (1): 162-168    DOI: 10.3785/j.issn.1008-973X.2021.01.019
机械工程     
耦合弯曲-剪切载荷L型压电振子的低宽频特性
蒋建东(),张玖利,牛瑞征,吴松涛,乔欣
浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州 310014
Low broadband characteristics of L-shaped piezoelectric cantilever beam with bending shear load
Jian-dong JIANG(),Jiu-li ZHANG,Rui-zheng NIU,Song-tao WU,Xin QIAO
Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(1782 KB)   HTML
摘要:

针对传统的压电能量采集装置固有频率高、工作频率范围窄及能量转换率低的问题,基于Timoshenko梁理论提出耦合弯曲-剪切载荷的L型压电振子,研究基于L型压电振子的复合压电结构的能量采集特性. 根据无线传感器的作业环境特点,研究L型悬臂梁的长度、宽度及延伸段长等因素对压电能量采集频率、输出电压峰值及能量转换效率的影响规律. 组合不同尺寸L型压电悬臂梁,研究设计回字形布局的阵列式复合振子. 经仿真分析与实验验证结果可知,在0~250 Hz低频环境下,能量采集频率为28~36 Hz、61~68 Hz、92~99 Hz以及103~111 Hz,较等尺寸传统阵列式压电复合振子覆盖频率平均提升了260%.

关键词: Timoshenko梁L型悬臂梁低宽频复合振子    
Abstract:

The L-shaped cantilever beam with coupled bending-shear load was proposed based on the Timoshenko beam theory, and energy capture performance of composite piezoelectric structures of L-shaped piezoelectric cantilever beams was analyzed to solve the problems of high natural frequency, narrow working frequency range and low energy conversion efficiency in traditional piezoelectric energy harvesting devices. The effects of the length, width and length of the L-shaped cantilever beam on the piezoelectric energy acquisition frequency, output voltage peak and energy conversion efficiency were analyzed according to the characteristics of the operating environment of the wireless sensor. L-shaped piezoelectric cantilever beams with different sizes were combined to analyze and design the array-type composite vibrator with a square layout. Simulation calculations and experimental verification results were compared. The energy acquisition frequency was 28-36 Hz, 61-68 Hz, 92-99 Hz and 103-111 Hz at the environmental low frequency of 0-250 Hz. The frequency was improved by 260% on average compared with the conventional array piezoelectric composite beam of the same size.

Key words: Timoshenko beam    L-shaped cantilever beam    low broadband    composite oscillator
收稿日期: 2020-01-05 出版日期: 2021-01-27
CLC:  TN 712  
基金资助: 国家自然科学基金资助项目(51375456);浙江省自然科学基金资助项目(LY18E050025)
作者简介: 蒋建东(1974—),男,教授,从事机械动力学、机电系统设计与控制研究. orcid.org/0000-0002-4824-7120.E-mail: jiangjd@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蒋建东
张玖利
牛瑞征
吴松涛
乔欣

引用本文:

蒋建东,张玖利,牛瑞征,吴松涛,乔欣. 耦合弯曲-剪切载荷L型压电振子的低宽频特性[J]. 浙江大学学报(工学版), 2021, 55(1): 162-168.

Jian-dong JIANG,Jiu-li ZHANG,Rui-zheng NIU,Song-tao WU,Xin QIAO. Low broadband characteristics of L-shaped piezoelectric cantilever beam with bending shear load. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 162-168.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.019        http://www.zjujournals.com/eng/CN/Y2021/V55/I1/162

图 1  L型压电振子能量转换模型
图 2  L型压电振子有限元模型
材料 ρ/(kg·m?3 μ E/GPa
PZT-5H 7500 0.31 71
铍青铜 8300 0.35 130
ABS 1200 0.39 2
表 1  压电振子材料性能
序号 b /mm a /mm c /mm nf V1 /V V2 /V
1 5 60 15 1 3 ?
2 5 75 20 1 3.8 ?
3 5 90 25 1 4.7 ?
4 5 105 30 2 9 2.0
5 20 60 20 1 4 ?
6 20 75 15 1 3 ?
7 20 90 30 2 6 1.0
8 20 105 25 2 6.1 0.4
9 35 60 25 2 6.5 1.0
10 35 75 30 2 7.5 0.5
11 35 90 15 2 2.1 2.2
12 35 105 20 2 5 2.1
13 50 60 30 2 4.2 0.8
14 50 75 25 2 7 2.7
15 50 90 20 2 3.9 4.0
16 50 105 15 2 1.2 2.1
表 2  正交试验设计与结果
图 3  第1~16组压电振子前4阶模态频率分布曲线
图 4  第1~16组压电振子输出电压-频率分布曲线
图 5  第1~16组压电振子能量转换率-频率分布曲线
图 6  前4阶模态频率分布曲线(b =5~185 mm)
图 7  不同b下的输出电压-频率分布仿真结果图
组数 a /mm b /mm c /mm
1 105 44 30
2 105 41 30
3 105 37.5 30
4 105 32.5 30
5 60 21 15
6 60 20 15
7 60 18.5 15
8 60 17.5 15
表 3  L型压电复合振子结构尺寸
图 8  L型压电复合结构示意图
图 9  L型与传统压电复合振子输出电压-频率分布曲线
图 10  不同加速度载荷下L型压电复合振子输出电压-频率分布曲线
图 11  压电能量采集实验平台系统
图 12  不同b下的输出电压-频率分布实验结果图
图 13  压电复合振子实物图
图 14  L型压电复合振子实验与仿真结果比对曲线图
1 马祖长, 孙怡宁, 梅涛 无线传感器网络综述[J]. 通信学报, 2004, 25 (4): 114- 124
MA Zu-zhang, SUN Yi-ning, MEI Tao Survey on wireless sensors network[J]. Journal of China Institute of Communications, 2004, 25 (4): 114- 124
doi: 10.3321/j.issn:1000-436X.2004.04.016
2 杨斌强, 徐文谭, 陆国丽, 等 宽频压电振动能量采集器的分布参数模型与实验[J]. 中国机械工程, 2017, 28 (2): 127- 134
YANG Bin-qiang, XU Wen-tan, LU Guo-li, et al Distrubuted parameter model and experiments of a broadband piezoelelctric vibration energy harvester[J]. China Mechanical Engineering, 2017, 28 (2): 127- 134
doi: 10.3969/j.issn.1004-132X.2017.02.001
3 展永政, 王光庆 压电振动能量采集器的性能分析与功率优化[J]. 浙江大学学报: 工学版, 2014, 48 (7): 1248- 1253
ZHANG Yong-zheng, WANG Guang-qing Performance analysis and power optimization of piezoelectric vibration energy harvester[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (7): 1248- 1253
4 TRAN N, GHAYESH M H, ARJOMANDI M Ambient vibration energy harvesters: a review on nonlinear techniques for performa-nce enhancement[J]. International Journal of Engineering Science, 2018, 127: 162- 185
doi: 10.1016/j.ijengsci.2018.02.003
5 谢涛, 袁江波, 单小彪, 等 多悬臂梁压电振子频率分析及发电实验研究[J]. 西安交通大学学报, 2010, 44 (2): 98- 107
XIE Tao, YUAN Jiang-bo, SHAN Xiao-biao, et al Frequency analysis and electricity generated by multiple piezoelectric cantilevers in energy harvesting[J]. Journal of Xi′an Jiaotong University, 2010, 44 (2): 98- 107
6 RAMALINGAM U, GANDHI U, MANGALANATHAN U, et al A new piezoelectric energy harvester using two beams with tapered cavity for high power and wide broadband[J]. International Journal of Mechanical Sciences, 2018, 142-143: 224- 234
doi: 10.1016/j.ijmecsci.2018.05.003
7 OWENS B A M, MANN B P Linear and nonlinear electromagnetic coupling models invibration-based energy harvesting[J]. Journal of Sound and Vibration, 2012, 331 (4): 922- 937
doi: 10.1016/j.jsv.2011.10.026
8 REZAEI M, KHADEM S E, FIROOZY P Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects[J]. International Journal of Engineering Science, 2017, 118: 1- 15
doi: 10.1016/j.ijengsci.2017.04.001
9 FAN K, TAN Q, LIU H, et al Improved energy harvesting from low-frequency small-vibrations through a monostable piezoelectric energy harvester[J]. Mechanical Systems and Signal Processing, 2019, 117: 594- 608
doi: 10.1016/j.ymssp.2018.08.001
10 SU W J, ZU J, ZHU Y Design and develo-pment of a broadband magnet-induced dual cantilever piezoelectric energy harvester[J]. Journal of Intelligent Material Systems and Structures, 2014, 25 (4): 430- 442
doi: 10.1177/1045389X13498315
11 DEHROUYEH-SEMNANI A M, NIKKHAH-BAHRAMI M, YAZDI M R H On nonlinear stability of fluid-conveying imperfect micro pipes[J]. International Journal of Engineering Science, 2017, 120: 254- 271
doi: 10.1016/j.ijengsci.2017.08.004
12 FAROKHI H, GHAYESH M H Supercritical nonlinear parametric dynamics of Timoshen-ko micro beams[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 59: 592- 605
doi: 10.1016/j.cnsns.2017.11.033
13 FAROKHI H, GHAYESH M H, GHOLIPOLIPOURG A, et al Nonlinear oscillations of viscoelastic microplates[J]. International Journal of Engineering Science, 2017, 118: 56- 69
doi: 10.1016/j.ijengsci.2017.05.006
14 MASANA R, DAQAQ M F Relative performance of a vibratory energy harvester in mono and bistable potentials[J]. Journal of Sound and Vibration, 2011, 330 (24): 6036- 6052
doi: 10.1016/j.jsv.2011.07.031
15 YANG Z T, YANG J S Connected vibrating piezoelectric bimorph beams as a wideband piezoelectric power harvester[J]. Journal of Intelligent Material Systems and Structures, 2009, 20: 569- 574
doi: 10.1177/1045389X08100042
16 LIEN I C, SHU Y C Array of piezoelectric energy harvesting by the equivalent impedance approach[J]. Smart Materials and Structures, 2012, 21 (8): 082001
doi: 10.1088/0964-1726/21/8/082001
17 SHAHRUZ S M Limits of performance of mechanical bandpass filters used in energy scavenging[J]. Journal of Sound and Vibration, 2006, 293: 449- 461
doi: 10.1016/j.jsv.2005.09.022
18 ALDRAIHEM O J, WETHERHOLD R C, SINGH T Distributed control of laminated beams: Timoshenko theory vs. Euler-Bernoulli theory[J]. Journal of Intelligent Material Systems and Structures, 1997, 8 (2): 149- 157
doi: 10.1177/1045389X9700800205
19 夏呈. 修正铁摩辛柯梁受迫振动响应分析及其应用[D]. 南京: 东南大学, 2017: 6.
XIA Cheng. The analysis of forced vibration response of modified Timoshenko beam theory and its application [D]. Nanjing: Southeast University, 2017: 6.
[1] 梁荣柱, 宗梦繁, 康成, 吴文兵, 方宇翔, 夏唐代, 程康. 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(工学版), 2018, 52(3): 420-430.
[2] 杨连枝, 张亮亮, 余莲英, 尚兰歌, 高阳, 王敏中. 悬臂梁固定端不同位移边界条件下解的对比[J]. 浙江大学学报(工学版), 2014, 48(11): 1955-1961.
[3] 蒋吉清, 鲍亦兴, 陈伟球. 结构动力分析中回传射线矩阵法的扩展与应用[J]. J4, 2009, 43(6): 1065-1070.
[4] 肖南 顾强强. 钢柱脚抗剪键埋深的对偶函数积分变换解法[J]. J4, 2009, 43(2): 353-359.
[5] 诸骏 陈伟球 叶贵如. 轴力作用下带弹性支座的Timoshenko梁的动力优化[J]. J4, 2008, 42(1): 60-65.
[6] 肖南 何亮. 钢结构柱脚抗剪键设计方法研究[J]. J4, 2007, 41(1): 181-186.
[7] 胡安峰 谢康和 肖志荣. 层状土中考虑剪切变形的单桩水平振动解析解[J]. J4, 2005, 39(6): 869-873.