Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (8): 1466-1473    DOI: 10.3785/j.issn.1008-973X.2020.08.003
机械工程     
超声波体积流量计声场混合计算方法
赵楠楠(),胡亮,毛凯*(),陈文昱,傅新
浙江大学 机械工程学院,浙江 杭州 310058
Hybrid determination method for acoustic field of ultrasonic volumetric flowmeter
Nan-nan ZHAO(),Liang HU,Kai MAO*(),Wen-yu CHEN,Xin FU
School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1755 KB)   HTML
摘要:

超声波体积流量计测量空间内声场分布主要由换能器性能和实际工况下的流场共同决定. 在进行相关声场研究时,为了解决仅使用数值法难以对实际换能器重要计算参数进行准确建模的问题,提出联合测量边界条件和数值法的混合计算方法对声场进行求解. 计算模型的振动边界条件通过使用扫描式激光测振仪测量换能器表面离散点的振动速度并对其进行数据拟合来准确获取,实现以实验测量的数据对建模不确定性最大的换能器进行表征. 由计算流体动力学对超声体积流量计在不同体积流量下的流场进行求解,并将获取的流场导入数值计算模型中作为背景流场. 借助有限元软件COMSOL求解由非均匀流中线性声学式推导的控制式对声场进行预测. 比较预测和实验结果,对混合计算方法进行验证.

关键词: 气体超声体积流量计换能器声场流场测量边界条件    
Abstract:

Acoustic field distribution in the measuring space of ultrasonic volumetric flowmeter is mainly determined by the performance of the transducer and the flow field under actual conditions. A hybrid approach combining measured boundary conditions and numerical method was used to predict the acoustic field, in order to solve the problem that only using numerical method has the difficulty in accurately modeling important calculation parameters of actual transducer. The vibration boundary condition of calculation model is accurately obtained by using a laser scanning vibrometer to measure vibration velocity of discrete points on transducer surface and following a data fitting computation, which means that the transducer with the most modelling uncertainty is replaced by the experimental data. The flow fields inside the ultrasonic volumetric flowmeter under different volume flowrates were calculated by computational fluid dynamics, and then the simulation results were inserted into the numerical calculation model as the background field. The acoustic field can be predicted by solving the governing equation derived from linear wave acoustic equations in non-uniform flow with the help of the finite element software COMSOL. The proposed hybrid approach is validated by comparing the predicted and experimental data.

Key words: gas ultrasonic flowmeter    transducer    acoustic field    flow field    measured boundary condition
收稿日期: 2019-07-15 出版日期: 2020-08-28
CLC:  TH 701  
基金资助: 国家自然科学基金资助项目(51821093)
通讯作者: 毛凯     E-mail: znifei@zju.edu.cn;maokai@zju.edu.cn
作者简介: 赵楠楠(1992—),男,博士生,从事超声波体积流量计和换能器研究. orcid.org/0000-0003-3020-5034. E-mail: znifei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵楠楠
胡亮
毛凯
陈文昱
傅新

引用本文:

赵楠楠,胡亮,毛凯,陈文昱,傅新. 超声波体积流量计声场混合计算方法[J]. 浙江大学学报(工学版), 2020, 54(8): 1466-1473.

Nan-nan ZHAO,Liang HU,Kai MAO,Wen-yu CHEN,Xin FU. Hybrid determination method for acoustic field of ultrasonic volumetric flowmeter. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1466-1473.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.003        http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1466

图 1  计算域示意图
图 2  激光测振仪(PSV-500)测量超声换能器表面振动
图 3  换能器表面振动速度拟合结果
图 4  超声体积流量计上游的安装管段
图 5  观测平面上的流速分布
图 6  不同体积流量下观测平面上的声场分布仿真结果
图 7  接收端换能器表面所处空间的声压分布
${\bar Q}_{{V} }/\left({\rm{m} }{ \cdot {\rm{h} } }^{-1}\right)$ ${F_{{\rm{sp}}}}$/mN ${F_{{\rm{\_sp}}}}$/mN ${F_{{\rm{sb}}}}$/mN ${F_{{\rm{db}}}}$/mN
20 12.93 12.41 10.12 10.12
50 12.09 11.05 9.38 9.40
80 10.87 9.45 8.35 8.43
160 6.72 6.17 5.45 5.52
200 4.84 4.35 4.49 4.48
表 1  不同体积流量下换能器表面所处空间的平均作用力
图 8  超声体积流量计电压信号测量系统
图 9  不同体积流量下测量的输出电压信号的电压幅度
$ {\bar Q}_{{V}}/\left({\rm{m}}\cdot{{\rm{h}}}^{-1}\right) $ ${V_{{\rm{sp}}}}$ / $ {\rm{V}} $ ${V_{{\rm{\_sp}}}}$ / $ {\rm{V}} $ ${V_{{\rm{sb}}}}$ / $ {\rm{V}} $ ${V_{{\rm{db}}}}$ / $ {\rm{V}} $
20 1.583 1.581 1.241 1.237
50 1.471 1.414 1.152 1.152
80 1.316 1.247 1.009 1.007
160 0.813 0.776 0.677 0.658
200 0.570 0.532 0.511 0.509
表 2  不同体积流量下获得的有效输出电压信号幅度
图 10  预测压力和实测电压比较结果
1 O'SULLIVANI J, WRIGHT W M Ultrasonic measurement of flow using electrostatic transducers[J]. Ultrasonics, 2002, 40 (1–8): 407- 411
2 LYNNWORTH L C, LIU Y Ultrasonic flowmeters: half-century progress report, 1955–2005[J]. Ultrasonics, 2006, 44 (Suppl ement): 1371- 1378
3 RAJITA G, MANDAL N. Review on transit time ultrasonic flowmeter [C]// 2nd International Conference on Control, Instru-mentation, Energy and Communication (CIEC). Kolkata: IEEE, 2016: 88-92.
4 LYGRE A, VESTRHEIM M, LUNDE P, et al Numerical simulation of ultrasonic flowmeters[J]. Ultrasonics International, 1987, 25 (6): 196- 201
5 BOONE M, VERMAAS E A A new ray-tracing algorithm for arbitrary inhomogeneous and moving media, including caustics[J]. Journal of the Acoustical Society of America, 1991, 90 (4): 2109- 2117
doi: 10.1121/1.401638
6 IOOSS B, LHUILLIER C, JEANNEAU H Numerical simulation of transit-time ultrasonic flowmeters: uncertainties due to flow profile and fluid turbulence[J]. Ultrasonics, 2002, 40 (9): 1009- 1015
doi: 10.1016/S0041-624X(02)00387-6
7 KUPNIK M, O'LEARY P, SCHRODER A, et al. Numerical simulation of ultrasonic transit-time flowmeter performance in high temperature gas flows [C] // IEEE Symposium on Ultrasonics. Honolulu: IEEE, 2004: 1354-1359.
8 ZHENG D, MEI J, WANG M Improvement of gas ultrasonic flowmeter measurement nonlinearity based on ray tracing method[J]. Iet Science Measurement and Technology, 2016, 10 (6): 602- 606
doi: 10.1049/iet-smt.2015.0310
9 郑丹丹, 王蜜, 孙彦招 速度分布对气体超声体积流量计声传播规律的影响[J]. 天津大学学报: 自然科学与工程技术版, 2017, 50 (11): 1169- 1175
ZHENG Dan-dan, WANG Mi, SUN Yan-zhao Effect of velocity distribution on acoustic propagation of gas ultrasonic flowmeter[J]. Journal of Tianjin University: Science and Technology, 2017, 50 (11): 1169- 1175
10 HUGHES T J R The finite element method: linear static and dynamic finite element analysis[J]. Religion, 2003, 6 (2): 222
11 LERCH R Simulation of piezoelectric devices by two- and three-dimensional finite elements[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1990, 37 (3): 233- 247
doi: 10.1109/58.55314
12 WOJCIK G L, VAUGHAN D K, ABBOUD N, et al. Electrome-chanical modeling using explicit time-domain finite elements [C] // Proceedings of the IEEE Ultrasonics Symposium. Baltimore: IEEE, 1993: 1107-1112.
13 ECCARDT P C, LANDES H, LERCH R Applications of finite element simulations to acoustic wave propagation within flowing media[J]. International Journal of Computer Applications in Technology, 1998, 11 (3): 163- 169
14 PIERCE, ALLAN D Wave equation for sound in fluids with unsteady inhomogeneous flow[J]. The Journal of the Acoustical Society of America, 1990, 87 (6): 2292
doi: 10.1121/1.399073
15 LUCA A, MARCHIANO R, CHASSAING J C Numerical simulation of transit-time ultrasonic flowmeters by a direct approach[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63 (6): 886- 897
16 孙伟, 胡文祥. 热黏滞效应对振膜-微声腔耦合系统的影响[C]// 上海-西安声学学会第四届声学学术交流会. 常州: 《声学技术》编辑部, 2015: 22-26.
SUN Wei, HU Wen-xiang. Influence of viscothermal effects on coupling system of membrane-micro acoustic cavity [C]// 4th Symposium on Acoustics of Shanghai-Xi'an Acoustic Society. Changzhou: Editorial Department of Acoustic Technology, 2015: 22-26.
17 张海澜. 理论声学[M]. 北京: 高等教育出版社, 2012.
18 ASTLEY R J, EVERSMAN W Wave envelope and infinite element schemes for fan noise radiation from turbofan inlets[J]. AIAA Journal, 1984, 22 (12): 1719- 1726
doi: 10.2514/3.8843
19 MYERS M K On the acoustic boundary condition in the presence of flow[J]. Journal of Sound and Vibration, 1980, 71 (3): 429- 434
doi: 10.1016/0022-460X(80)90424-1
20 何祚镛, 赵玉芳. 声学理论基础[M]. 北京: 国防工业出版社, 1981.
21 QIN L H, TANG Z Y, HU L, et al Numerical Analysis of transducer installation effect on ultrasonic gas flow meter[J]. Applied Mechanics and Materials, 2014, 687?691: 1019- 1025
doi: 10.4028/www.scientific.net/AMM.687-691.1019
22 International Organization of Legal Metrology. Gas meters: Part 1: metrological and technical requirements document rec: OIML R 137-1 I [S]. Paris: International Organization of Legal Metrology, 2006.
[1] 刘桓龙,谢迟新,李大法,王家为. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886.
[2] 胡广豪,薛进学,马文举,隆志力. 芯片键合纵弯复合超声换能器的设计与试验[J]. 浙江大学学报(工学版), 2020, 54(7): 1335-1340.
[3] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[4] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[5] 卞荣,楼文娟,李航,赵夏双,章李刚. 不同流场下钢管输电塔塔身气动力特性[J]. 浙江大学学报(工学版), 2019, 53(5): 910-916.
[6] 武二永,韩烨,李立强,邓双,杨克己. 大尺寸板状构件超声阵列悬浮技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2058-2066.
[7] 柯世堂,余文林,徐璐,杜凌云,余玮,杨青. 风雨下考虑偏航效应风力机流场及气动载荷[J]. 浙江大学学报(工学版), 2019, 53(10): 1936-1945.
[8] 潘以恒, 罗其奇, 周斌, 陈建平. 半无限平面含注浆圈深埋隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(6): 1114-1122.
[9] 李林毅, 阳军生, 张峥, 麻彦娜, 张聪, 包德勇. 深埋式中心水沟排水隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2050-2057.
[10] 罗凯, 孙大明, 章杰, 张宁, 王凯, 徐雅, 邹江. 用于热声发电的曲柄连杆式换能器工作特性[J]. 浙江大学学报(工学版), 2017, 51(8): 1619-1625.
[11] 何宾, 肖新标, 周信, 金学松. 声屏障插入损失影响因素及降噪机理研究[J]. 浙江大学学报(工学版), 2017, 51(4): 761-770.
[12] 何乐路, 范小强, 黄正梁, 王靖岱, 阳永荣, 李勇, 俞欢军. Shell粉煤气化炉渣池内熔渣沉积的周向分布特性[J]. 浙江大学学报(工学版), 2017, 51(4): 771-776.
[13] 刘洁,白玉川,徐海珏. 幂律流底泥的质量输移和流场[J]. 浙江大学学报(工学版), 2016, 50(9): 1798-1805.
[14] 牟介刚,刘剑,谷云庆,代东顺,郑水华,吴登昊. 仿生蜗壳离心泵内部非定常流动特性分析[J]. 浙江大学学报(工学版), 2016, 50(5): 927-933.
[15] 柯世堂,朱鹏. 基于大涡模拟增设气动措施冷却塔风荷载频域特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2143-2149.