Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (4): 787-795    DOI: 10.3785/j.issn.1008-973X.2020.04.018
土木工程、交通工程     
基于弹性地基曲梁理论的盾构隧道管片分析方法
黄伟明(),王金昌,徐日庆,杨仲轩,徐荣桥*()
浙江大学 土木工程学系,浙江 杭州 310058
Structural analysis of shield tunnel lining using theory of curved beam resting on elastic foundation
Wei-ming HUANG(),Jin-chang WANG,Ri-qing XU,Zhong-xuan YANG,Rong-qiao XU*()
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1284 KB)   HTML
摘要:

基于弹性地基曲梁理论,考虑管片接头的抗弯、抗压和抗剪性能,采用状态空间法,求得圆形盾构隧道管片环在周围土压力作用下变形和内力的解析解. 通过与有限元和简化解结果的对比,验证了解析结果. 参数分析表明,在盾构工法的典型地层范围内,接头剪切刚度的变化对衬砌内力和变形的影响明显小于其他2个方向刚度的变化. 衬砌的水平变形由受压内缩趋势和荷载差异导致的横扩趋势共同决定. 接头轴向刚度的削弱加剧内缩趋势,土弹簧的存在对上述2种趋势的发展起限制作用. 当接头轴向刚度较小时,内缩趋势占主导地位,将导致衬砌向内的水平变形.

关键词: 隧道衬砌弹性地基曲梁理论状态空间法管片接头    
Abstract:

The state space method was used to find the exact solution for the deformations and internal forces of a lining subjected to surrounding ground pressure based on the theory of curved beam resting on elastic foundation and considering the rotation-resisting, compression-resisting and shear-resisting capacities of joints. The solution was validated by a comparison with the results of the finite element method and simplified analytical solution. The parameter analysis showed that the variation of shearing stiffness of the joints shows a less influence on the internal forces and deformation of the lining than that of the other two stiffnesses of joints in the typical range of soil deposits for the application of shield tunneling. The horizontal deformation of lining is codetermined by the contracting trend of the entire lining due to compressional force and the horizontal expansion trend caused by the difference between vertical and horizontal pressure acting on the lining. The degradation of axial stiffness of joint may increase the contracting trend of lining, and the existence of soil springs can limit the development of both trends. When the compressional stiffness of joints is small, the contracting trend would be dominant and lead to an inward horizontal deformation.

Key words: tunnel lining    elastic foundation    curved beam theory    state space method    joint of lining segment
收稿日期: 2019-03-26 出版日期: 2020-04-05
CLC:  U 451  
基金资助: 国家“973”重点基础研究发展规划资助项目(2015CB057801);国家自然科学基金资助项目(51578499,51761130078)
通讯作者: 徐荣桥     E-mail: 10912032@zju.edu.cn;xurongqiao@zju.edu.cn
作者简介: 黄伟明(1986—),男,博士生,从事盾构隧道结构分析研究. orcid.org/0000-0002-9684-6574. E-mail: 10912032@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄伟明
王金昌
徐日庆
杨仲轩
徐荣桥

引用本文:

黄伟明,王金昌,徐日庆,杨仲轩,徐荣桥. 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报(工学版), 2020, 54(4): 787-795.

Wei-ming HUANG,Jin-chang WANG,Ri-qing XU,Zhong-xuan YANG,Rong-qiao XU. Structural analysis of shield tunnel lining using theory of curved beam resting on elastic foundation. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 787-795.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.018        http://www.zjujournals.com/eng/CN/Y2020/V54/I4/787

图 1  衬砌结构分析模型
图 2  弹性地基上单个连续曲梁段模型
图 B.1  衬砌荷载分布
图 3  衬砌环状态向量传递路线
图 4  本文解析解与Abaqus数值解计算结果对比
图 5  本文解析解与简化解[6]计算结果对比
图 6  不同接头转动弹簧刚度下,无量纲衬砌内力和收敛位移最大值随无量纲土弹簧径向抗力系数的变化曲线
图 7  不同接头剪切弹簧刚度下,无量纲衬砌内力和收敛位移最大值随无量纲土弹簧径向抗力系数的变化曲线
图 8  不同接头轴向弹簧刚度下,无量纲化衬砌内力和收敛位移最大值随土弹簧径向抗力系数的变化曲线
${\bar q_j}$ 关于双曲余弦函数的积分系数 关于双曲正弦函数的积分系数
$\begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;{{\bar q}_1} \\ ({90^{\circ}} \leqslant \xi \leqslant {270^{\circ}}) \\ \end{array} $ $\begin{array}{l} {B_{z,\;{\rm ch},i,1}}{\rm{ = }}{\lambda _i}(\lambda _i^2 + 4),\;{\beta _1} = - {\lambda _i}\sin \;(2\theta ), \\ {\beta _2} = {\lambda _i}\sin \;(2{\theta _0}),\;{\beta _3} = - \left[ {2 + \lambda _i^2{{\cos }^2}{\theta _0}} \right] \\ \end{array} $ $\begin{array}{l} {B_{z,\;{\rm sh},i,1}} = {\lambda _i}(\lambda _i^2 + 4),\;{\beta _1} = 2 + \lambda _i^2{\cos ^2}\;\theta , \\ {\beta _2} = - \left[ {2 + \lambda _i^2{{\cos }^2}\;{\theta _0}} \right],\;{\beta _3} = {\lambda _i}\sin \;(2{\theta _0}), \\ \end{array} $
$\begin{array}{l} {B_{s,\;{\rm ch},i,1}}{\rm{ = }}2(\lambda _i^2 + 4),\;{\beta _1} = - 2\cos \;(2\theta ), \\ {\beta _2} = {\rm{2}}\cos \;(2{\theta _0}),\;{\beta _3} = {\lambda _i}\sin \;(2{\theta _0}) \\ \end{array} $ $\begin{array}{l} {B_{s,\;{\rm sh},i,1}} = 2(\lambda _i^2 + 4),\;{\beta _1} = - {\lambda _i}\sin \;(2\theta ), \\ {\beta _2} = {\lambda _i}{\rm{sin}}\;(2{\theta _0}),\;{\beta _3} = 2\cos \;(2{\theta _0}) \\ \end{array} $
$\begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;{{\bar q}_2} \\ ({{\rm{0}}^{\circ}} \leqslant \xi \leqslant {\rm{9}}{{\rm{0}}^{\circ}}, \\ {\rm{ 27}}{{\rm{0}}^{\circ}} \leqslant \xi \leqslant {\rm{36}}{{\rm{0}}^{\circ}} ) \\ \end{array} $ ${\eta _{z,\;{\rm ch},i,2}} = {\eta _{z,\;{\rm ch},i,1}},\;{B_{z,\;{\rm ch},i,2}} = {B_{z,\;{\rm ch},i,1}}$ ${\eta _{z,\;{\rm sh},i,2}} = {\eta _{z,\;{\rm sh},i,1}},\;{B_{z,\;{\rm sh},i,2}} = {B_{z,\;{\rm sh},i,1}}$
${\eta _{s,\;{\rm ch},i,2}} = {\eta _{s,\;{\rm ch},i,1}},\;{B_{s,\;{\rm ch},i,2}} = {B_{s,\;{\rm ch},i,1}}$ ${\eta _{s,\;{\rm sh},i,2}} = {\eta _{s,\;{\rm sh},i,1}},\;{B_{s,\;{\rm sh},i,2}} = {B_{s,\;{\rm sh},i,1}}$
$\begin{array}{l} \;\;\;\;\;\;\;\;{{\bar q}_3} \\ ({0^{\circ}} \leqslant \xi \leqslant {360^{\circ}}) \\ \end{array} $ $\begin{array}{l} {B_{z,\;{\rm ch},i,3}} = {\lambda _i}(\lambda _i^2 + 4),\;{\beta _1} = {\lambda _i}\sin \;(2\theta ), \\ {\beta _2} = - {\lambda _i}\sin \;(2{\theta _0}),\;{\beta _3} = - [2 + \lambda _i^2{\sin ^2} \;{{\theta _0}}] \\ \end{array} $ $\begin{array}{l} {B_{z,\;{\rm sh},i,3}} = {\lambda _i}(\lambda _i^2 + 4),\;{\beta _1} = 2 + \lambda _i^2{\sin ^2}\;\theta , \\ {\beta _2} = - \left[ {2 + \lambda _i^2{{\sin }^2}\;{\theta _0}} \right],\;{\beta _3} = - {\lambda _i}\sin \;(2{\theta _0}) \\ \end{array} $
${\eta _{s,\;{\rm ch},i,3}} = - {\eta _{s,\;{\rm ch},i,1}},\;{B_{s,\;{\rm ch},i,3}} = {B_{s,\;{\rm ch},i,1}}$ ${\eta _{s,\;{\rm sh},i,3}} = - {\eta _{s,\;{\rm sh},i,1}},\;{B_{s,\;{\rm sh},i,3}} = {B_{s,\;{\rm sh},i,1}}$
$\begin{array}{l} \;\;\;\;\;\;\;{{\bar q}_4} \\ ({0^{\circ}} \leqslant \xi \leqslant {360^{\circ}} ) \\ \end{array} $ $\begin{array}{l} {f_{z,\;{\rm ch},i,4}} = {{\bar q}_4}\sum\limits_{k = 1}^3 {{{{\eta _{z,\;{\rm ch},i,4,k}}}}/{{{B_{z,\;{\rm ch},i,4,k}}}}} \\ {\eta _{{\rm{z}},\;{\rm ch},i,4,k}}{\rm{ = }}{\beta _{k,1}} + {\beta _{k,2}}\cosh\;[{\lambda _i}(\theta - {\theta _0})] +\\ \quad\quad\quad\quad {\beta _{k,3}}\sinh\;[{\lambda _i}(\theta - {\theta _0})]\;;\\ {B_{z,\;{\rm ch},i,4,1}} = 4{\lambda _i}(\lambda _i^2 + 4),\;{B_{z,\;{\rm ch},i,4,2}} = 8(\lambda _i^2 + 1),\\ {B_{z,\;{\rm ch},i,4,3}} = 8(\lambda _i^2 + 9),\;{\beta _{1,1}} = {\rm{2}}{\lambda _i}\sin \;(2\theta ),\\ {\beta _{1,2}} = - 2{\lambda _i}\sin \;(2{\theta _0}),\\ {\beta _{1,3}} = - \left[ {2\lambda _i^2{{\sin }^2}{\theta _0} + 4} \right],\\ {\beta _{2,1}} = - \sin \;\theta ,\;{\beta _{2,2}} = \sin \;{\theta _0},\\ {\beta _{2,3}} = - {\lambda _i}\cos \;{\theta _0},\;{\beta _{3,1}} = {\rm{3sin\;(3}}\theta ),\\ {\beta _{3,2}} = - {\rm{3sin\;(3}}{\theta _0}),\;{\beta _{3,3}} = {\lambda _i}\cos \;\left( {3{\theta _0}} \right) \end{array}$ $\begin{array}{l} {f_{z,\;{\rm sh},i,4}} = {{\bar q}_4}\sum\limits_{k = 1}^2 {{{{\eta _{z,\;{\rm {sh}},i,4,k}}}}/{{{B_{z.{\rm{sh}},i,4,k}}}}} \\ {\eta _{z,\;{\rm {sh}},i,4,k}} = {\beta _{k,1}} + {\beta _{k,2}}\cosh\;[{\lambda _i}(\theta - {\theta _0})] +\\ \quad\quad\quad\quad\;{\beta _{k,3}}\sinh\;[{\lambda _i}(\theta - {\theta _0})];\\ {B_{z,\;{\rm sh},i,4,1}} = 4{\lambda _i}(\lambda _i^2 + 4),\;{B_{z,\;{\rm sh},i,4,2}} = 2(\lambda _i^2 + 1)(\lambda _i^2 + 9)\\ {\beta _{1,1}} = 4 + 2\lambda _i^2{\sin ^2}\theta ,\;{\beta _{1,2}} = - [4 + 2\lambda _i^2{\sin ^2}{\theta _0}],\\ {\beta _{1,3}} = - 2{\lambda _i}\sin \;(2{\theta _0}),\\ {\beta _{2,1}} = 2{\lambda _i}{\cos ^3}\; \theta + {\lambda _i}\left( {\lambda _i^2 + 3} \right)\cos \; \theta {\sin ^2}\; \theta ,\\ {\beta _{2,2}} = - \left[ {2{\lambda _i}{{\cos }^3} \;{{\theta _0}} + {\lambda _i}\left( {\lambda _i^2 + 3} \right)\cos \;{{\theta _0}}{{\sin }^2} \;{{\theta _0}}} \right],\\ {\beta _{2,3}} = \left[ {\left( {\lambda _i^2 + 3} \right){{\sin }^3} \;{{\theta _0}} - 2\lambda _i^2\sin \;{{\theta _0}}{{\cos }^2} \;{{\theta _0}}} \right] \end{array}$
$\begin{array}{l} {f_{s,\;{\rm ch},i,4}} = {{\bar q}_4}\sum\limits_{k = 1}^3 {{{{\eta _{s,\;{\rm ch},i,4,k}}}}/{{{B_{s,\;{\rm ch},i,4,k}}}}} \\ {\eta _{s,\;{\rm ch},i,4,k}} = {\beta _{k,1}} + {\beta _{k,2}}\cosh\; \left[ {{\lambda _i}\left( {\theta - {\theta _0}} \right)} \right] + \\ \quad\quad\quad\quad \;\; {\beta _{k,3}}\sinh \left[ {{\lambda _i}\left( {\theta - {\theta _0}} \right)} \right]; \\ {B_{s,\;{\rm ch},i,4,1}} = 4(\lambda _i^2 + 4),\;{B_{s,\;{\rm ch},i,4,2}}{\rm{ = }}8(\lambda _i^2 + 1), \\ {B_{s,\;{\rm ch},i,4,3}} = 8(\lambda _i^2 + 9),\;{\beta _{1,1}} = 2\cos \left( {2\theta } \right), \\ {\beta _{1,2}} = - 2\cos \left( {2{\theta _0}} \right),\;{\beta _{1,3}} = - {\lambda _i}\sin \left( {2{\theta _0}} \right), \\ {\beta _{2,1}} = \cos \; \theta ,\;{\beta _{2,2}} = - \cos \;{{\theta _0}}, \\ {\beta _{2,3}} = - {\lambda _i}\sin \;{{\theta _0}},\;{\beta _{3,1}} = 3\cos \left( {3\theta } \right), \\ {\beta _{3,2}} = - 3\cos \left( {3{\theta _0}} \right),\;{\beta _{3,3}} = - {\lambda _i}\sin \left( {3{\theta _0}} \right) \\ \end{array} $ $\begin{array}{l} {f_{s,\;{\rm sh},i,4}} = {{\bar q}_4}\sum\limits_{k = 1}^3 {{{{\eta _{s,\;{\rm sh},i,4,k}}}}/{{{B_{s,\;{\rm sh},i,4,k}}}}} \\ {\eta _{s,\;{\rm sh},i,4,k}}{\rm{ = }}{\beta _{k,1}} + {\beta _{k,2}}\cosh\;[{\lambda _i}(\theta - {\theta _0})] + \\ \quad\quad\quad\quad {\beta _{k,3}}\sinh\;[{\lambda _i}(\theta - {\theta _0})]; \\ {B_{s,\;{\rm sh},i,4,1}} = 4(\lambda _i^2 + 4),\;{B_{s,\;{\rm sh},i,4,2}} = 8(\lambda _i^2 + 1), \\ {B_{s,\;{\rm sh},i,4,3}}{\rm{ = }}8(\lambda _i^2 + 9),\;{\beta _{1,1}} = {\lambda _i}\sin \;(2\theta ), \\ {\beta _{1,2}} = - {\lambda _i}\sin \;(2{\theta _0}),\;{\beta _{1,3}} = - 2\cos \;(2{\theta _0}), \\ {\beta _{2,1}} = {\lambda _i}\sin \;\theta ,\;{\beta _{2,2}} = - {\lambda _i}\sin \;{\theta _0}, \\ {\beta _{2,3}} = - \cos \;{\theta _0},\;{\beta _{3,1}} = {\lambda _i}\sin \left( {3\theta } \right), \\ {\beta _{3,2}} = - {\lambda _i}\sin \left( {3{\theta _0}} \right),\;{\beta _{3,3}} = - 3\cos \left( {3{\theta _0}} \right) \\ \end{array} $
$\begin{array}{l} \;\;\;\;\;\;\;{{\bar q}_5} \\ ({0^{\circ}} \leqslant \xi \leqslant {360^{\circ}}) \\ \end{array} $ $\begin{array}{l} {B_{z,\;{\rm ch},i,5}} = \lambda _i^2 + 1,\;{\beta _1} = - \sin \;\theta , \\ {\beta _2} = \sin \;{\theta _0},\;{\beta _3} = - {\lambda _i}\cos \;{\theta _0} \\ \end{array} $ $\begin{array}{l} {B_{z,\;{\rm sh},i,5}}{\rm{ = }}\lambda _i^2 + 1,\;{\beta _1} = - {\lambda _i}\cos \;\theta , \\ {\beta _2} = {\lambda _i}\cos \;{\theta _0},\;{\beta _3} = - \sin \;{\theta _0} \\ \end{array} $
$\begin{array}{l} {B_{s,\;{\rm ch},i,5}}{\rm{ = }}\lambda _i^2 + 1,\;{\beta _1} = \cos \;\theta , \\ {\beta _2} = - \cos \;{\theta _0},\;{\beta _3} = - {\lambda _i}\sin \;{\theta _0} \\ \end{array} $ $\begin{array}{l} {B_{s,\;{\rm sh},i,5}}{\rm{ = }}\lambda _i^2 + 1,\;{\beta _1} = {\lambda _i}\sin \;\theta , \\ {\beta _2} = - {\lambda _i}\sin \;{\theta _0},\;{\beta _3} = - \cos \;{\theta _0} \\ \end{array} $
表 B.1  各荷载相关积分
1 DO N A, DIAS D, ORESTE P, et al 2D numerical investigation of segmental tunnel lining behavior[J]. Tunnelling and Underground Space Technology, 2013, 37: 115- 127
doi: 10.1016/j.tust.2013.03.008
2 陈仁朋, 刘源, 刘声向, 等 盾构隧道管片施工期上浮特性[J]. 浙江大学学报: 工学版, 2014, 48 (6): 1068- 1074
CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, et al Characteristics of upward moving for lining during shield tunneling construction[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (6): 1068- 1074
3 孙廉威, 秦建设, 洪义, 等 地面堆载下盾构隧道管片与环缝接头的性状分析[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1509- 1518
SUN Lian-wei, QIN Jian-she, HONG Yi, et al Shield tunnel segment and circumferential joint performance under surface surcharge[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1509- 1518
4 EINSTEIN H H, SCHWARTZ C W Simplified analysis for tunnel supports[J]. Journal of the Geotechnical Engineering Division, 1979, 105 (4): 499- 518
5 朱合华, 陶履彬 盾构隧道衬砌结构受力分析的梁-弹簧系统模型[J]. 岩土力学, 1998, 19 (2): 26- 32
ZHU He-hua, TAO Lv-bin Study on two beam-spring models for the numerical analysis of segments in shield tunnel[J]. Rock and Soil Mechanics, 1998, 19 (2): 26- 32
6 BLOM C B M. Design philosophy of concrete linings for tunnels in soft soils [D]. Delft: Delft University Press, 2002.
7 BAKKER K J Structural design of linings for bored tunnels in soft ground[J]. Heron, 2003, 48 (1): 33- 63
8 EL NAGGAR H, HINCHBERGER S D An analytical solution for jointed tunnel linings in elastic soil or rock[J]. Canadian Geotechnical Journal, 2008, 45 (11): 1572- 1593
doi: 10.1139/T08-075
9 ZHANG J L, THOMAS S, YUAN Y, et al The influence of interfacial joints on the structural behavior of segmental tunnel rings subjected to ground pressure[J]. Tunnelling and Underground Space Technology, 2019, 84: 538- 556
doi: 10.1016/j.tust.2018.08.025
10 LEE K M, HOU X Y, GE X W, et al An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25 (4): 365- 390
doi: 10.1002/nag.134
11 DO N A, DIAS D, ORESTE P, et al A new numerical approach to the hyperstatic reaction method for segmental tunnel linings[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38 (15): 1617- 1632
doi: 10.1002/nag.2277
12 姚伟岸, 钟万勰. 辛弹性力学[M]. 北京: 高等教育出版社, 2002.
13 刘承斌, 刘文耀, 陈伟球, 等 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1185- 1193
LIU Cheng-bin, LIU Wen-yao, CHEN Wei-qiu, et al Generalized thermal shock analysis of piezoelectric spherical shell based on L-S theory[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1185- 1193
14 CHEN W Q, WU Y F, XU R Q State space formulation for composite beams with partial interaction[J]. Composites Science and Technology, 2007, 67 (11/12): 2500- 2512
15 DEMIRHAN P A, TASKIN V Levy solution for bending analysis of functionally graded sandwich plates based on variable plate theory[J]. Composites Structures, 2017, 177: 80- 95
doi: 10.1016/j.compstruct.2017.06.048
16 QATU M S Theories and analyses of thin and moderately thick laminated composite curved beams[J]. International Journal of Solids and Structures, 1993, 30 (20): 2743- 2756
doi: 10.1016/0020-7683(93)90152-W
[1] 欧阳光,李田军,张江涛,汪劲丰,徐荣桥. 基于状态空间法的分段变截面吊杆张拉力分析[J]. 浙江大学学报(工学版), 2020, 54(2): 257-263.
[2] 韩兴博,夏永旭,王永东,叶飞. 隧道衬砌抗弯承载能力概率劣化模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2175-2184.
[3] 刘承斌, 刘文耀, 陈伟球, 王惠明, 吕朝锋. 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1185-1193.
[4] 王薇, 刘讴, 曹琨, 徐志胜. 火灾下隧道衬砌混凝土细观损伤演化[J]. 浙江大学学报(工学版), 2018, 52(5): 906-913.
[5] 汪炳, 黄侨, 邹韵, 李文贤. 开孔板连接件剩余承载力计算模型及试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1537-1543.
[6] 刘承斌, 边祖光, 陈伟球. 叠层压电球壳的三维热释电分析[J]. J4, 2011, 45(6): 1067-1073.
[7] 陈志平 葛颂 沈建民 蒋家羚. 大型原油储罐有限元分析建模的新方法[J]. J4, 2006, 40(6): 977-981.
[8] 胡安峰 谢康和 肖志荣. 层状土中考虑剪切变形的单桩水平振动解析解[J]. J4, 2005, 39(6): 869-873.
[9] 颜可珍 夏唐代 周新民. 运动荷载作用下弹性地基无限长板动力响应[J]. J4, 2005, 39(12): 1875-1881.
[10] 任涛 童根树. 轮压荷载作用下吊车梁承压应力分析[J]. J4, 2005, 39(10): 1582-1588.