Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 906-913    DOI: 10.3785/j.issn.1008-973X.2018.05.010
土木与交通工程     
火灾下隧道衬砌混凝土细观损伤演化
王薇, 刘讴, 曹琨, 徐志胜
中南大学 土木工程学院, 湖南 长沙 410075
Meso damage evolution of tunnel lining concrete under fire
WANG Wei, LIU Ou, CAO Kun, XU Zhi-sheng
School of Civil Engineering, Central South University, Changsha 410075, China
 全文: PDF(2063 KB)   HTML
摘要:

为了客观地反映火灾下衬砌混凝土高温损伤的本质,需要考虑混凝土结构特性的不均匀性.结合细观损伤力学,建立混凝土热力耦合作用下衬砌混凝土细观损伤过程的数值模型,该模型考虑了隧道衬砌结构顶部的受力状态,可以研究隧道衬砌混凝土在火灾过程中的力学行为与损伤过程.研究结果表明,火灾对隧道衬砌混凝土的力学性质和损伤演化过程影响显著,界面的力学特性决定宏观强度的差异;基于强度等效理论,隧道衬砌混凝土在RABT火灾荷载下的累积等效烧损深度呈曲线变化;细观数值模拟下损伤单元比例与等效烧损深度存在较好的线性关系.

Abstract:

The heterogeneity of concrete structure needs to be considered for the study of concrete damage, in order to objectively reflect the essence of the high temperature damage of concrete. A numerical model was established to analyze the meso-damage process of concrete under thermal mechanical coupling combined with meso-damage mechanics.The model considered the stress state at the top of the tunnel lining. The mechanical behavior and damage process of tunnel lining concrete in the course of fire were analyzed.Results show that the influence of fire on the mechanical properties and damage evolution process of tunnel lining concrete is significant, and the mechanical properties of the interface determine the differences in macroscopic strength. The cumulative equivalent burning loss depth of tunnel lining concrete under the RABT fire loading shows curve variation based on the strength equivalence theory. In the meso-scale numerical simulation, there is a good linear relationship between the damage unit ratio and the equivalent burning loss depth.

收稿日期: 2017-04-11 出版日期: 2018-11-07
CLC:  TU528  
基金资助:

国家自然科学基金资助项目(51676210);湖南省自然科学基金资助项目(2018JJ2519).

作者简介: 王薇(1969-),女,副教授,从事隧道结构计算与分析及长大隧道灾害防治等研究.orcid.org/0000-0001-7784-4998,E-mail:wangweicsu@csu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王薇, 刘讴, 曹琨, 徐志胜. 火灾下隧道衬砌混凝土细观损伤演化[J]. 浙江大学学报(工学版), 2018, 52(5): 906-913.

WANG Wei, LIU Ou, CAO Kun, XU Zhi-sheng. Meso damage evolution of tunnel lining concrete under fire. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 906-913.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.010        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/906

[1] LUCCIONI B M, FINGUEROA M I, DANNESI R E. Thermomechanic model for concrete exposed to elevated temperature[J]. Engineering Structures, 2003. 25:729-742.
[2] GAWIN D, PESAVENTO F, SCHREFLER B A. Modelling of hygrothermal behaviour of concrete at high temperature with thermochemical and mechanical material degradation[J]. Computer Methods in Applied Mechanics & Engineering, 2003, 192(13):1731-1771.
[3] 过镇海.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003:10-65.
[4] 闫治国,朱合华,梁利.火灾高温下隧道衬砌管片力学性能试验[J].同济大学学报:自然科学版,2012,40(6):823-828. YAN Zhi-guo, ZHU He-hua, LIANG Li. Experimental study on mechanical performance of lining segment in fire accidents[J]. Journal of Tongji University:Natural Science, 2012, 40(6):823-828.
[5] 黄涛,王珍,张泽江.公路隧道衬砌高性能混凝土的高温烧损试验研究[J].中国矿业大学学报,2012,41(1):142-147. HUANG Tao, WANG Zhen, ZHANG Ze-jiang. Experimental research on the high-temperature buring of a highway tunnel lining made from high performance concrete[J]. Journal of China University of Mining & Technology, 2012, 41(1):142-147.
[6] 李朝红,王海龙,徐光兴.混凝土损伤断裂的三维细观数值模拟[J].中南大学学报自然科学版,2011,42(2):463-469. LI Chao-hong, WANG Hai-long, XU Guang-xing. 3-D mesoscopic numerical simulation of concrete damage and fracture[J]. Journal of Central South University:Science and Technology, 2011, 42(2):463-469.
[7] 白卫峰,管俊峰,崔莹,等.混凝土双轴压-压细观统计损伤本构模型[J].四川大学学报:工程科学版,2013, 45(6):74-81. BAI Wei-feng, GUAN Jun-feng, CUI Ying, et al. Staistical damage constitutive model concrete under biaxial compression[J]. Journal of Sichuan University:Engineering Science Edition, 2013, 45(6):74-81.
[8] 刘庭金,莫海鸿,朱合华.非均质混凝土细观数值模型及其在双边裂纹加载中的应用[J].华南理工大学学报:自然科学版,2005,33(10):52-56. LIU Ting-jin, MO Hai-hong, ZHU He-hua. Mesoscopic numerical model of heterogeneous concrete and its application in bilateral crack loading[J]. Journal of South China University of Technology:Natural Science Edition, 2005, 33(10):52-56.
[9] 马怀发,陈厚群,阳昌陆.复杂动荷载作用下全级配混凝土损伤机理细观数值试验[J].土木工程学报,2012(7):175-182. MA Huai-fa, CHEN Hou-qun, YANG Chang-lu. Mesoscopic numerical model of heterogeneous concrete and its application in bilateral crack loading[J]. China Civil Engineering Journal, 2012(7):175-182.
[10] 李冬,金浏,杜修力.钢筋混凝土柱轴心受压性能及尺寸效应的细观数值研究[J].水利学报,2016,47(2):209-218. LI Dong, JIN Liu, DU Xiu-li. Meso numerical study on axial compression behavior and size effect of reinforced concrete columns[J]. Journal of Hydraulic Engineering, 2016, 47(2):209-218.
[11] DOUGIL J W. On stable progressively fracturing solid[J]. Journal of Applied Mathematics and Physics, 1976, 27(4):23-437.
[12] 李灏.损伤力学基础[M].济南:山东科学技术出版社,1992:43-90.
[13] 唐世斌,唐春安,梁正召,等.混凝土热传导与热应力的细观特性及热开裂过程研究[J].土木工程学报,2012(2):11-19. TANG Shi-bing, TANG Chun-an, LIANG Zheng-zhao, et al. Study on the micro characteristics and thermal cracking process of heat conduction and thermal stress in concrete[J]. China Civil Engineering Journal, 2012(2):11-19.
[14] 龚正炉.基于随机骨料模型的混凝土性能多尺度数值模拟研究[D].杭州:浙江大学,2013. GONG Zheng-lu. Multi-scale numerical simulation research of concrete based on random aggregate[D]. Hangzhou:Zhejiang University, 2013.
[15] 肖建庄,杜江涛,刘琼.基于格构模型再生混凝土单轴受压数值模拟[J].建筑材料学报,2009,12(5):511-514. XIAO Jian-zhuang, DU Jiang-tao, LIU Qiong. Numerical simulation of recycled concrete under uniaxial compression based on lattice model[J]. Journal of Building Materials, 2009, 12(5):511-514.
[16] 王翠娟.火灾模式下多梁式混凝土T型梁桥结构性能研究[D].西安:长安大学,2013. WANG Cui-juan. Study on structure performance for multi-beam concrete T-shaped section beam girder subjected to fire[D].Xian:Chang'an University, 2013.
[17] 廖仕超.隧道火灾下衬砌结构承载力研究[D].长沙:中南大学,2011. LIAO Shi-chao. Study on bearing capacity of lining structure under tunnel fire[D].Changsha:Central South University, 2011.

[1] 王哲, 吴礼程. 不同减摩条件下变长度活性粉末混凝土的三轴试验研究[J]. 浙江大学学报(工学版), 2019, 53(1): 40-50.
[2] 宋迎宾, 徐金霞, 蒋林华, 谭启平, 梅友静. NO3-/NO2-插层MgAl-LDHs在混凝土模拟孔溶液中的阻锈性能[J]. 浙江大学学报(工学版), 2018, 52(12): 2397-2405.
[3] 田帅奇, 仉庆宇, 王可, 范利武, 俞自涛, 葛坚. 试样尺寸对水蒸气扩散系数瞬态测试的影响[J]. 浙江大学学报(工学版), 2018, 52(11): 2077-2082.
[4] 王激扬, 马卫强, 胡志华, 万成霖. PE纤维掺量对水泥基复合材料力学性能的影响[J]. 浙江大学学报(工学版), 2017, 51(11): 2130-2135.
[5] 李奔奔, 江佳斐, 豆香香, 肖平成. 新型被动式真三轴试验装置[J]. 浙江大学学报(工学版), 2017, 51(9): 1688-1694.
[6] 薛鹏飞, 项贻强. 修正的氯离子在混凝土中的扩散模型及其工程应用[J]. J4, 2010, 44(4): 831-.
[7] 卢振永, 金伟良, 王海龙, 等. 人工气候模拟加速试验的相似性设计[J]. J4, 2009, 43(6): 1071-1076.