Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 233-240    DOI: 10.3785/j.issn.1008-973X.2020.02.003
土木与交通工程     
石墨烯压阻复合材料及其在裂纹监测中的应用
吴志强(),卫军*(),董荣珍
中南大学 土木工程学院,湖南 长沙 410075
Graphene-based piezoresistive composite and application in crack monitoring
Zhi-qiang WU(),Jun WEI*(),Rong-zhen DONG
School of Civil Engineering, Central South University, Changsha 410075, China
 全文: PDF(1392 KB)   HTML
摘要:

为了弥补现有柔性应变传感器在健康监测上的不足,以还原氧化石墨烯(rGO)为导电填料,纳米纤维素(CNF)为分散剂和结构骨架,硅橡胶(PDMS)为聚合物弹性基体,采用溶液共混和溶剂挥发法,制备具有压阻效应的弹性复合材料. 对复合材料进行微观结构、力学、电学和机敏性能分析,结果表明,CNF能有效协助rGO在PDMS基体中均匀分散,形成稳定的三维增强和导电网络,提高复合材料的弹性模量和电导率. 当rGO、CNF占PDMS的质量分数分别为10%、3%时,复合材料的弹性模量最大为2.53 MPa,电导率为0.34 S/m. 当复合材料薄膜应变小于10%时,电阻相对变化量与应变呈线性关系,灵敏系数最大为63,对应rGO、CNF的质量分数分别为10%、3%;当应变大于10%时,呈指数变化. 分析复合材料的力电响应机理,将复合材料应用于材料或构件疲劳裂纹的监测中,设计应力强度因子薄膜传感器,并通过理论分析验证其可行性.

关键词: 还原氧化石墨烯纳米纤维素硅橡胶压阻效应薄膜传感器    
Abstract:

In order to remedy the deficiency of existing flexible strain sensors in health monitoring, an elastic composite material with piezoresistive effect was prepared by the solution blending and solvent evaporation method, with reduced graphene oxide (rGO) as conductive filler, cellulose nanofiber (CNF) as dispersant and structural skeleton, and polydimethylsiloxane (PDMS) as elastic matrix. The microstructure, mechanical properties, electrical conductivity and electromechanical performance of the composite were investigated. Results show that CNF can significantly improve the dispersion of rGO in the PDMS matrix, and help to form stable three-dimensional reinforcing and conductive networks, increasing the elastic modulus and conductivity of the composite. When the mass fractions of rGO and CNF in PDMS were 10% and 3%, respectively, the elastic modulus of the composite reached the maximum value of 2.53 MPa, with the electrical conductivity of 0.34 S/m. When the strain of the composite film was less than 10%, the relative variation of resistance was linear with the strain. The maximum sensitivity coefficient was 63, and the corresponding mass fractions of rGO and CNF were 10% and 3%, respectively. When the strain was more than 10%, the resistance varied exponentially. The electromechanical response mechanism of the composite was analyzed, and the composite was applied to the monitoring of fatigue cracks of materials or components. A film sensor of stress intensity factors was designed, and its feasibility was verified by theoretical analysis.

Key words: reduced graphene oxide    cellulose nanofiber    polydimethylsiloxane    piezoresistive effect    film sensor
收稿日期: 2019-05-26 出版日期: 2020-03-10
CLC:  TU 599  
基金资助: 国家自然科学基金资助项目(51778628,51578547)
通讯作者: 卫军     E-mail: 124801026@csu.edu.cn;juneweii@126.com
作者简介: 吴志强(1988—),男,博士生,从事石墨烯复合材料及结构损伤识别研究. orcid.org/0000-0003-2679-9247. E-mail: 124801026@csu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴志强
卫军
董荣珍

引用本文:

吴志强,卫军,董荣珍. 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报(工学版), 2020, 54(2): 233-240.

Zhi-qiang WU,Jun WEI,Rong-zhen DONG. Graphene-based piezoresistive composite and application in crack monitoring. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 233-240.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.003        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/233

图 1  rGO-CNF/PDMS复合材料制备流程示意图
图 2  rGO、rGO-CNF悬浮液的紫外-可见吸收光谱图
图 3  rGO、rGO-CNF悬浮液静置前、后对比图
图 4  rGO、CNF和rGO-CNF/PDMS的微观形貌
编号 w(rGO)/% w(CNF)/% 编号 w(rGO)/% w(CNF)/%
PDMS 0 0 B15/3 15 3
A5/0 5 0 B20/3 20 3
A10/0 10 0 C5/6 5 6
A15/0 15 0 C10/6 10 6
A20/0 20 0 C15/6 15 6
B5/3 5 3 C20/6 20 6
B10/3 10 3 ? ? ?
表 1  薄膜试样中rGO和CNF占PDMS的质量分数
图 5  各组rGO-CNF/PDMS薄膜试样的弹性模量
图 6  各组rGO-CNF/PDMS薄膜试样的电导率
图 7  B10/3、C20/6薄膜试样电阻变化率与应变的关系曲线
图 8  B10/3薄膜试样重复拉伸后的应变传感性能
图 9  rGO-CNF/PDMS薄膜试样电阻变化率与应变(<10%)的关系曲线
图 10  应力强度因子薄膜传感器
1 YANG H, CAO Y, HE J, et al Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices[J]. Carbon, 2017, 115: 561- 570
doi: 10.1016/j.carbon.2017.01.047
2 CHEN Z, REN W, GAO L, et al Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10 (6): 424- 428
doi: 10.1038/nmat3001
3 MA W, LIU Y, YAN S, et al Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties[J]. Nano Research, 2018, 11 (2): 741- 750
doi: 10.1007/s12274-017-1683-3
4 AKKACHAI P, KITTIPONG H, DARUNEE A, et al The effect of oxygen-plasma treated graphene nanoplatelets upon the properties of multiwalledcarbonnanotube and polycarbonate hybrid nanocomposites used for electrostatic dissipative applications[J]. Journal of Nanomaterials, 2015, 2015: 470297
5 TADAKALURU S, THONGSUWAN W, SINGJAI P Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber[J]. Sensors, 2014, 14 (1): 868- 876
doi: 10.3390/s140100868
6 LAGO E, TOTH P S, PUGLIESE G, et al Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties[J]. RSC Advances, 2016, 6: 97931- 97940
doi: 10.1039/C6RA21962D
7 LEELADHAR, RATURI P, SINGH J P Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators[J]. Scientific Reports, 2018, 8 (1): 3687
doi: 10.1038/s41598-018-21871-3
8 LIU Q, CHEN J, LI Y, et al High-performance strain sensors with fish scale-like graphene sensing layers for full-range detection of human motions[J]. ACS Nano, 2016, 10 (8): 7901- 7906
doi: 10.1021/acsnano.6b03813
9 BURTON A, LYNCH J P, KURATA M, et al Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring[J]. Smart Materials and Structures, 2017, 26 (9): 095052
doi: 10.1088/1361-665X/aa8105
10 ULLAH Z, LI Q, WANG R, et al Graphene/Ag-NWs electrodes for highly transparent and extremely stretchable supercapacitor[J]. IEEE Transactions on Nanotechnology, 2018, 17 (1): 65- 68
doi: 10.1109/TNANO.2016.2634556
11 LIU Y, ZHANG D, WANG K, et al A novel strain sensor based on graphene composite films with layered structure[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 95- 103
doi: 10.1016/j.compositesa.2015.10.010
12 KIM K S, YUE Z, JANG H, et al Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457 (7230): 706- 710
doi: 10.1038/nature07719
13 YANG X, QIU L, CHENG C, et al Ordered gelation of chemically converted graphene for next-generation electro conductive hydrogel films[J]. Angewandte Chemie International Edition, 2011, 50 (32): 7325- 7328
doi: 10.1002/anie.201100723
14 ZHI M, HUANG W, SHI Q, et al Improving water dispersibility of non-covalent functionalized reduced graphene oxide with l-tryptophan via cleaning oxidative debris[J]. Journal of Materials Science: Materials in Electronics, 2016, 27 (7): 7361- 7368
doi: 10.1007/s10854-016-4708-x
15 LEUNG A, HTAPOVIC S, LAM E, et al Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure[J]. Small, 2011, 7 (3): 302- 305
doi: 10.1002/smll.201001715
16 CHENG M, QIN Z, CHEN Y, et al Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids[J]. Cellulose, 2017, 24 (8): 3243- 3254
doi: 10.1007/s10570-017-1339-1
17 LIU P, GUO X, NAN F, et al Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid[J]. ACS Applied Materials and Interfaces, 2017, 9 (3): 3085- 3092
doi: 10.1021/acsami.6b12953
18 韩景泉, 陆凯悦, 岳一莹, 等 纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能[J]. 新型炭材料, 2018, 33 (4): 61- 70
HAN Jing-quan, LU Kai-yue, YUE Yi-ying, et al Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes[J]. New Carbon Materials, 2018, 33 (4): 61- 70
19 KHALIL H, BHAT A, YUSRA A Green composites from sustainable cellulose nanofibrils: a review[J]. Carbohydrate Polymers, 2012, 87 (2): 963- 979
doi: 10.1016/j.carbpol.2011.08.078
20 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T528-2009 [S]. 北京: 中国标准出版社, 2009.
21 CHEN L, CHEN G H, LU L Piezoresistive behavior study on finger-sensing silicone rubber/graphite nano sheetnanocom posites[J]. Advanced Functional Materials, 2007, 17 (6): 898- 904
doi: 10.1002/adfm.200600519
22 ZHAO J, HE C, YANG R, et al Ultra-sensitive strain sensors based on piezoresistive nanographene films[J]. Applied Physics Letters, 2012, 101 (6): 063112
doi: 10.1063/1.4742331
23 SIMMONS J G Incorporation of electric-field penetration of the electrodes in the theory of electron tunnelling through a dielectric layer[J]. British Journal of Applied Physics, 2002, 18 (3): 269
24 LU J R, WENG W G, CHEN X F, et al Piezoresistive materials from directed shear-induced assembly of graphite nanosheets in polyethylene[J]. Advanced Functional Materials, 2005, 15 (8): 1358- 1363
doi: 10.1002/adfm.200400298
[1] 胡卫军 李毅 邹绍芳 王平 Andrey Legin. 基于脉冲激光沉积的新型镉离子薄膜传感器[J]. J4, 2008, 42(2): 286-289.
[2] 赵翠峰 方仕江 罗嘉亮 詹学贵 邵月刚. 加成型室温硫化硅橡胶的制备——I.交联剂及填料的影响规律[J]. J4, 2007, 41(7): 1219-1222.