土木与交通工程 |
|
|
|
|
石墨烯压阻复合材料及其在裂纹监测中的应用 |
吴志强( ),卫军*( ),董荣珍 |
中南大学 土木工程学院,湖南 长沙 410075 |
|
Graphene-based piezoresistive composite and application in crack monitoring |
Zhi-qiang WU( ),Jun WEI*( ),Rong-zhen DONG |
School of Civil Engineering, Central South University, Changsha 410075, China |
1 |
YANG H, CAO Y, HE J, et al Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices[J]. Carbon, 2017, 115: 561- 570
doi: 10.1016/j.carbon.2017.01.047
|
2 |
CHEN Z, REN W, GAO L, et al Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10 (6): 424- 428
doi: 10.1038/nmat3001
|
3 |
MA W, LIU Y, YAN S, et al Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties[J]. Nano Research, 2018, 11 (2): 741- 750
doi: 10.1007/s12274-017-1683-3
|
4 |
AKKACHAI P, KITTIPONG H, DARUNEE A, et al The effect of oxygen-plasma treated graphene nanoplatelets upon the properties of multiwalledcarbonnanotube and polycarbonate hybrid nanocomposites used for electrostatic dissipative applications[J]. Journal of Nanomaterials, 2015, 2015: 470297
|
5 |
TADAKALURU S, THONGSUWAN W, SINGJAI P Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber[J]. Sensors, 2014, 14 (1): 868- 876
doi: 10.3390/s140100868
|
6 |
LAGO E, TOTH P S, PUGLIESE G, et al Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties[J]. RSC Advances, 2016, 6: 97931- 97940
doi: 10.1039/C6RA21962D
|
7 |
LEELADHAR, RATURI P, SINGH J P Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators[J]. Scientific Reports, 2018, 8 (1): 3687
doi: 10.1038/s41598-018-21871-3
|
8 |
LIU Q, CHEN J, LI Y, et al High-performance strain sensors with fish scale-like graphene sensing layers for full-range detection of human motions[J]. ACS Nano, 2016, 10 (8): 7901- 7906
doi: 10.1021/acsnano.6b03813
|
9 |
BURTON A, LYNCH J P, KURATA M, et al Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring[J]. Smart Materials and Structures, 2017, 26 (9): 095052
doi: 10.1088/1361-665X/aa8105
|
10 |
ULLAH Z, LI Q, WANG R, et al Graphene/Ag-NWs electrodes for highly transparent and extremely stretchable supercapacitor[J]. IEEE Transactions on Nanotechnology, 2018, 17 (1): 65- 68
doi: 10.1109/TNANO.2016.2634556
|
11 |
LIU Y, ZHANG D, WANG K, et al A novel strain sensor based on graphene composite films with layered structure[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 95- 103
doi: 10.1016/j.compositesa.2015.10.010
|
12 |
KIM K S, YUE Z, JANG H, et al Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457 (7230): 706- 710
doi: 10.1038/nature07719
|
13 |
YANG X, QIU L, CHENG C, et al Ordered gelation of chemically converted graphene for next-generation electro conductive hydrogel films[J]. Angewandte Chemie International Edition, 2011, 50 (32): 7325- 7328
doi: 10.1002/anie.201100723
|
14 |
ZHI M, HUANG W, SHI Q, et al Improving water dispersibility of non-covalent functionalized reduced graphene oxide with l-tryptophan via cleaning oxidative debris[J]. Journal of Materials Science: Materials in Electronics, 2016, 27 (7): 7361- 7368
doi: 10.1007/s10854-016-4708-x
|
15 |
LEUNG A, HTAPOVIC S, LAM E, et al Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure[J]. Small, 2011, 7 (3): 302- 305
doi: 10.1002/smll.201001715
|
16 |
CHENG M, QIN Z, CHEN Y, et al Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids[J]. Cellulose, 2017, 24 (8): 3243- 3254
doi: 10.1007/s10570-017-1339-1
|
17 |
LIU P, GUO X, NAN F, et al Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid[J]. ACS Applied Materials and Interfaces, 2017, 9 (3): 3085- 3092
doi: 10.1021/acsami.6b12953
|
18 |
韩景泉, 陆凯悦, 岳一莹, 等 纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能[J]. 新型炭材料, 2018, 33 (4): 61- 70 HAN Jing-quan, LU Kai-yue, YUE Yi-ying, et al Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes[J]. New Carbon Materials, 2018, 33 (4): 61- 70
|
19 |
KHALIL H, BHAT A, YUSRA A Green composites from sustainable cellulose nanofibrils: a review[J]. Carbohydrate Polymers, 2012, 87 (2): 963- 979
doi: 10.1016/j.carbpol.2011.08.078
|
20 |
中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T528-2009 [S]. 北京: 中国标准出版社, 2009.
|
21 |
CHEN L, CHEN G H, LU L Piezoresistive behavior study on finger-sensing silicone rubber/graphite nano sheetnanocom posites[J]. Advanced Functional Materials, 2007, 17 (6): 898- 904
doi: 10.1002/adfm.200600519
|
22 |
ZHAO J, HE C, YANG R, et al Ultra-sensitive strain sensors based on piezoresistive nanographene films[J]. Applied Physics Letters, 2012, 101 (6): 063112
doi: 10.1063/1.4742331
|
23 |
SIMMONS J G Incorporation of electric-field penetration of the electrodes in the theory of electron tunnelling through a dielectric layer[J]. British Journal of Applied Physics, 2002, 18 (3): 269
|
24 |
LU J R, WENG W G, CHEN X F, et al Piezoresistive materials from directed shear-induced assembly of graphite nanosheets in polyethylene[J]. Advanced Functional Materials, 2005, 15 (8): 1358- 1363
doi: 10.1002/adfm.200400298
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|