Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (12): 2301-2309    DOI: 10.3785/j.issn.1008-973X.2020.12.004
机械工程、能源工程     
基于改进稀疏滤波与深度网络融合的轴承故障诊断
乔美英(),汤夏夏(),闫书豪,史建柯
河南理工大学 电气工程与自动化学院,河南 焦作 454000
Bearing fault diagnosis based on improved sparse filter and deep network fusion
Mei-ying QIAO(),Xia-xia TANG(),Shu-hao YAN,Jian-ke SHI
College of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
 全文: PDF(2061 KB)   HTML
摘要:

针对滚动轴承故障时特征提取依赖人工经验,以及故障类别难以自动准确识别的问题,提出了一种改进稀疏滤波和深层空洞门卷积网络相结合的故障诊断模型. 采用滑动窗对具有时序特征的轴承振动信号进行采样处理以避免过拟合;通过改进目标函数的稀疏滤波消除数据中的异方差并提取数据特征,达到缩短计算时间和提高分类准确率的效果;利用空洞门卷积和双向LSTM网络对噪声进行滤除,同时进行故障分类识别. 对比凯斯西储大学和动力系统装置的轴承实验数据,显示该模型故障诊断准确率可达98%. 不同负载和不同信噪比的轴承振动信号实验,表明该模型具有泛化性和抗噪性.

关键词: 特征提取稀疏滤波空洞门卷积双向LSTM故障分类抗噪性    
Abstract:

An improved model combining sparse filtering and deep dilated gate convolutional network was proposed in order to solve the problem that feature extraction relies on manual experience when rolling bearing faults occur, and that the fault category was difficult to automatically and accurately identify. Sliding window was used to sample bearing vibration signals with time series characteristics in order to avoid over fitting. Heteroscedasticity was eliminated and data features were extracted by improving the sparse filtering of the objective function in order to shorten the calculation time and improve the accuracy of classification. The fault classification model was established by combining the dilated gate convolution and the bidirectional LSTM network, and the data noise can be filtered out. Data experiments from Case Western Reserve University and laboratory power equipment were compared. Results show that the fault diagnosis accuracy rate of this model can reach 98%. Different load and different SNR experiments with bearing vibration signals show that the model has generalization and anti-noise performance.

Key words: feature extraction    sparse filter    dilated gate convolution    bidirectional LSTM    fault classification    anti-noise performance
收稿日期: 2020-01-09 出版日期: 2020-12-31
CLC:  TM 307  
基金资助: 国家自然科学基金资助项目(U1404510);河南省矿山电力电子装置与控制创新型科技团队基金资助项目(CXTD2017085)
作者简介: 乔美英(1976—),女,副教授,从事振动信号处理、故障诊断研究. orcid.org/0000-0001-9281-341X. E-mail: qiaomy@hpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
乔美英
汤夏夏
闫书豪
史建柯

引用本文:

乔美英,汤夏夏,闫书豪,史建柯. 基于改进稀疏滤波与深度网络融合的轴承故障诊断[J]. 浙江大学学报(工学版), 2020, 54(12): 2301-2309.

Mei-ying QIAO,Xia-xia TANG,Shu-hao YAN,Jian-ke SHI. Bearing fault diagnosis based on improved sparse filter and deep network fusion. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2301-2309.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.004        http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2301

图 1  原始数据散点图
图 2  基于传统稀疏滤波后的散点图
图 3  基于改进稀疏滤波后的散点图
图 4  空洞门卷积神经网络结构图
图 5  不同空洞率的空洞卷积
图 6  稀疏空洞门卷积网络流程图
图 7  CWRU试验台
数据集 信号等级 D/mm LD/HP
1 2 3 4
1 正常 0 0 1 2 3
2 轻微内圈故障 7 0 1 2 3
3 中等内圈故障 14 0 1 2 3
4 严重内圈故障 21 0 1 2 3
5 轻微外圈故障 7 0 1 2 3
6 中等外圈故障 14 0 1 2 3
7 严重外圈故障 21 0 1 2 3
8 轻微滚动故障 7 0 1 2 3
9 中等滚动故障 14 0 1 2 3
10 严重滚动故障 21 0 1 2 3
表 1  CWRU轴承故障数据集
图 8  动力传动系统诊断测试台
模型 ACC t/s
DBLSTM 0.928 45.21
ISP-DBLSTM 0.987 45.02
DGLSTM 0.971 43.96
ISP-DGLSTM 0.998 41.92
表 2  4种网络模型结果对比
图 9  CWRU轴承数据信号图
网络层 输出参数 卷积核 滤波器数量 rD
输入 1 200×1 ? ? ?
Covn1 3×16 3×1 16 1
Covn2 3×16 3×1 16 2
Covn3 3×16 3×1 16 2
Covn4 3×16 3×1 16 4
DBLSTM1 100×1 50 ? ?
DBLSTM2 100×1 50 ? ?
Dense1 200 ? ? ?
Dense2 10 ? ? ?
表 3  ISP-DGLSTM网络模型各层参数设置
图 10  CWRU数据的4种模型精度对比曲线图
图 11  动力传动系统轴承数据信号图
图 12  动力传动系统数据的4种模型精度对比曲线图
图 13  CWRU数据下4种模型精度图
图 14  动力传动系统数据的4种模型精度图
图 15  加入信噪比的CWRU数据信号图
图 16  凯斯西储大学数据中加入信噪比为1的精度对比曲线图
图 17  凯斯西储大学数据中加入信噪比为−4的精度对比曲线图
1 朱会杰, 王新晴, 芮挺, 等 基于平移不变CNN的机械故障诊断研究[J]. 振动与冲击, 2019, 38 (5): 45- 52
ZHU Hui-jie, WANG Xin-qing, RUI Ting, et al Machinery fault diagnosis based on shift invariant CNN[J]. Journal of Vibration and Shock, 2019, 38 (5): 45- 52
2 杨宇, 罗鹏, 甘磊, 等. SADBN及其在滚动轴承故障分类识别中的应用[J]. 振动与冲击, 2019, 38(15): 11-16.
YANG Yu, LUO Peng, GAN Lei, et al. SADBN and its application in rolling bearing fault identification and classification [J]. Journal of Vibration and Shock, 2019, 38(15): 11-16.
3 JORDI B V, RUBEN P, JAVIER M R, et al Short-frequency Fourier transform for fault diagnosis of induction machines working in transient regime[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (3): 432- 440
doi: 10.1109/TIM.2016.2647458
4 程卫东, 赵德尊 用于滚动轴承转频估计的EMD软阈值降噪算法[J]. 浙江大学学报: 工学版, 2016, 50 (3): 428- 435
CHENG Wei-dong, ZHAO De-zun EMD soft-thresholding denoising algorithm for rolling element bearing rotational frequency estimation[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (3): 428- 435
5 SHUAI J, LEE S K Bearing fault detection utilizing group delay and the Hilbert-Huang transform[J]. Journal of Mechanical Science and Technology, 2017, 31 (3): 1089- 1096
doi: 10.1007/s12206-017-0208-z
6 杨先勇, 周晓军, 张文斌, 等 基于形态小波和S变换的滚动轴承故障特征提取[J]. 浙江大学学报: 工学版, 2010, 44 (11): 2088- 2092
YANG Xian-yong, ZHOU Xiao-jun, ZHANG Wen-bin, et al Rolling bearing fault feature extraction based on morphological wavelet and S-transform[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (11): 2088- 2092
7 周奇才, 沈鹤鸿, 赵炯, 等 基于改进堆叠式循环神经网络的轴承故障诊断[J]. 同济大学学报: 自然科学版, 2019, 47 (10): 1500- 1507
ZHOU Qi-cai, SHEN He-hong, ZHAO Jiong, et al Bearing fault diagnosis based on improved stacked recurrent neural network[J]. Journal of Tongji University: Natural Science, 2019, 47 (10): 1500- 1507
8 ZHUANG Z, LV H, XU, et al A deep learning method for bearing fault diagnosis through stacked residual dilated convolutions[J]. Applied Sciences, 2019, 9 (9): 1823
doi: 10.3390/app9091823
9 田源. 基于深度学习的中文命名实体识别方法研究[D]. 长沙: 湖南大学, 2018: 42-56.
TIAN Yuan. The research of Chinese named entity recognition based on deep learning [D]. Changsha: Hunan University, 2018: 42-56.
10 LEI Y, JIA F, LIN J, et al An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (5): 3137- 3147
doi: 10.1109/TIE.2016.2519325
11 于洋, 何明, 刘博, 等 基于TL-LSTM的轴承故障声发射信号识别研究[J]. 仪器仪表学报, 2019, 40 (5): 51- 59
YU Yang, HE Ming, LIU Bo, et al Research on acoustic emission signal recognition of bearing fault based on TL-LSTM[J]. Chinese Journal of Scientific Instrument, 2019, 40 (5): 51- 59
12 NGIAM J, CHEN Z, BHASKAR S A, et al. Sparse filtering [C] // Proceedings of Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2011: 1125-1133.
13 陈赟 基于稀疏滤波的信号识别[J]. 电信快报, 2015, (8): 46- 48
CHEN Yun signal recognition based on sparse filtering[J]. Telecom Express, 2015, (8): 46- 48
14 邱立达, 刘天键, 傅平 基于深度稀疏滤波的目标跟踪[J]. 计算机辅助设计与图形学学报, 2017, 29 (3): 459- 468
QIU Li-da, LIU Tian-jian, FU Ping Target tracking based on deep sparse filtering[J]. Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (3): 459- 468
doi: 10.3969/j.issn.1003-9775.2017.03.008
15 ALEXIS B, PRASAD S, FRéDéRIC B, et al Well-posedness of the permutation problem in sparse filter estimation with ?p minimization [J]. Applied and Computational Harmonic Analysis, 2013, 35 (3): 394- 406
doi: 10.1016/j.acha.2012.11.001
16 何金洋 基于稀疏滤波和神经网络的人脸识别算法[J]. 理论探讨, 2016, 7 (5): 28- 31
HE Jin-yang The facial recognition algorithm based on sparse filtering-neural networks[J]. Theoretical Investigation, 2016, 7 (5): 28- 31
17 李永国. 变量预测模型模式识别方法及其在滚动轴承故障诊断中的应用[D]. 长沙: 湖南大学, 2015: 6-12.
LI Yong-guo. Variable predictive model based class discriminate and its application in fault diagnosis of roller bearing [D]. Changsha: Hunan University, 2015: 6-12.
18 YANG H, LV J, GUO C Weighted composite quantile regression estimation and variable selection for varying coefficient models with heteroscedasticity[J]. Journal of the Korean Statistical Society, 2015, 44 (1): 77- 94
doi: 10.1016/j.jkss.2014.05.005
19 HILL J B Robust generalized empirical likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors[J]. Journal of Multivariate Analysis, 2015, 135: 131- 152
doi: 10.1016/j.jmva.2014.12.008
20 杨荣芳, 周惠 靶场光学测量数据异方差性检验及修正[J]. 指挥控制与仿真, 2008, 30 (4): 114- 116
YANG Rong-fang, ZHOU Hui Test and adjust heteroscedasticity of optical measure data in proof range[J]. Command Control and Simulation, 2008, 30 (4): 114- 116
doi: 10.3969/j.issn.1673-3819.2008.04.031
21 HALUNGA A, ORME C D, YAMAGATA T A heteroskedasticity robust Breusch-Pagan test for contemporaneous correlation in dynamic panel data models[J]. Journal of Econometrics, 2017, 198 (2): 209- 230
doi: 10.1016/j.jeconom.2016.12.005
22 万书亭, 佟海侠, 董炳辉 基于最小二乘支持向量机的滚动轴承故障诊断[J]. 振动. 测试与诊断, 2010, 30 (2): 149- 152
WAN Shu-ting, TONG Hai-xia, DONG Bing-hui Bearing fault diagnosis using wavelet packet transform and least square support vector machines[J]. Journal of Vibration, Measurement and Diagnosis, 2010, 30 (2): 149- 152
23 GE F, JU Y, QI Z, et al Parameter estimation of a Gaussian mixture model for wind power forecast error by Riemann L-BFGS optimization[J]. IEEE Access, 2018, (6): 38892- 38899
24 李旭芳, 段春林, 张冬波, 等 遥测数据时间序列滑动窗口动态分割技术[J]. 飞行器测控学报, 2015, 34 (4): 345- 349
LI Xu-fang, DUAN Chun-lin, ZHANG Dong-bo, et al A dynamic slide windows segmentation technology for telemetry time series[J]. Journal of Spacecraft TT and C Technology, 2015, 34 (4): 345- 349
25 YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [C] // International Conference on Learning Representations. San Juan, Puerto Rico: ICLR, 2016.
26 LORENZO J, BARRA R, YAMAGISHI J, et al Improving Spanish speech synthesis intelligibility under noisy environments[J]. Journal of the Acoustical Society of America, 2016, 140 (4): 2961- 2962
27 LONG J, SHELHAMER E, DARRELL T Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39 (4): 640- 651
28 NAIM I, RILEY P, GILDEA D Feature-based decipherment for machine translation[J]. Computational Linguistics, 2018, 44 (2): 1- 33
29 张利刚. 基于全空洞卷积神经网络的图像语义分割[D]. 长春: 东北师范大学, 2018: 9-15.
ZHANG Li-gang. Image semantic segmentation based on full cavitation convolutional neural network [D]. Changchun: Northeast Normal University, 2018: 9-15.
30 张新峰, 闫昆鹏, 赵珣 基于双向LSTM的手写文字识别技术研究[J]. 南京师大学报, 2019, 42 (3): 58- 64
ZHANG Xin-feng, YAN Kun-peng, ZHAO Xun Handwriting Chinese text recognition using BiLSTM network[J]. Journal of Nanjing Normal University, 2019, 42 (3): 58- 64
31 YANG Y, FU P, HE Y Bearing fault automatic classification based on deep learning[J]. IEEE Access, 2018, (6): 71540- 71554
32 乔美英, 刘宇翔, 兰建义 基于VMD和马氏距离SVM的滚动轴承故障诊断[J]. 中山大学学报: 自然科学版, 2019, 58 (5): 8- 16
QIAO Mei-ying, LIU Yu-xiang, LAN Jian-yi Fault diagnosis method of rolling bearings based on VMD and mahalanobis distance SVM[J]. Journal of Sun Yat-sen University: Medical Sciences, 2019, 58 (5): 8- 16
[1] 刘芳,汪震,刘睿迪,王锴. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.
[2] 冯毅雄,李康杰,高一聪,郑浩,谭建荣. 基于特征与形貌重构的轴件表面缺陷检测方法[J]. 浙江大学学报(工学版), 2020, 54(3): 427-434.
[3] 赵小虎,尹良飞,赵成龙. 基于全局?局部特征和自适应注意力机制的图像语义描述算法[J]. 浙江大学学报(工学版), 2020, 54(1): 126-134.
[4] 赫贵然,李奇,冯华君,徐之海,陈跃庭. 基于CNN特征提取的双焦相机连续数字变焦[J]. 浙江大学学报(工学版), 2019, 53(6): 1182-1189.
[5] 董月,冯华君,徐之海,陈跃庭,李奇. Attention Res-Unet: 一种高效阴影检测算法[J]. 浙江大学学报(工学版), 2019, 53(2): 373-381.
[6] 赵祥龙,陈捷,洪荣晶,王华,李媛媛. 基于Wavelet leader和优化的等距映射算法的回转支承自适应特征提取[J]. 浙江大学学报(工学版), 2019, 53(11): 2092-2101.
[7] 童水光, 张依东, 徐剑, 从飞云. 频带多尺度复合模糊熵及其在轴承故障诊断中的应用[J]. 浙江大学学报(工学版), 2018, 52(8): 1509-1516.
[8] 王日俊, 赵常均, 白越, 曾志强, 杜文华, 段能全. 基于多故障分类的Hex-Rotor无人飞行器的执行单元故障检测与自重构[J]. 浙江大学学报(工学版), 2018, 52(7): 1406-1414.
[9] 于勇, 周阳, 曹鹏, 赵罡. 基于MBD模型的工序模型构建方法[J]. 浙江大学学报(工学版), 2018, 52(6): 1025-1034.
[10] 朱东阳, 沈静逸, 黄炜平, 梁军. 基于主动学习和加权支持向量机的工业故障识别[J]. 浙江大学学报(工学版), 2017, 51(4): 697-705.
[11] 谭海龙, 刘康玲, 金鑫, 石向荣, 梁军. 基于μσ-DWC特征和树结构M-SVM的多维时间序列分类[J]. 浙江大学学报(工学版), 2015, 49(6): 1061-1069.
[12] 白帆, 郑慧峰, 沈平平, 王成, 喻桑桑. 基于花朵特征编码归类的植物种类识别方法[J]. 浙江大学学报(工学版), 2015, 49(10): 1902-1908.
[13] 王蒙, 林兰芬, 王锋. 基于伪相关反馈的短文本扩展与分类[J]. 浙江大学学报(工学版), 2014, 48(5): 2-.
[14] 王蒙, 林兰芬, 王锋. 基于伪相关反馈的短文本扩展与分类[J]. 浙江大学学报(工学版), 2014, 48(10): 1835-1842.
[15] 施锦河, 沈继忠, 王攀. 四类运动想象脑电信号特征提取与分类算法[J]. J4, 2012, 46(2): 338-344.