Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (12): 2294-2300    DOI: 10.3785/j.issn.1008-973X.2020.12.003
机械工程、能源工程     
纹理边界引导的复合材料圆孔检测方法
张太恒1(),梅标2,乔磊1,杨浩杰1,朱伟东1,*()
1. 浙江大学 机械工程学院,浙江 杭州 310027
2. 浙江大学 先进技术研究院,浙江 杭州 310027
Detection method for composite hole guided by texture boundary
Tai-heng ZHANG1(),Biao MEI2,Lei QIAO1,Hao-jie YANG1,Wei-dong ZHU1,*()
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Institute of Advanced Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1677 KB)   HTML
摘要:

针对复合材料纹理背景下圆形基准孔检测困难的问题,提出一种纹理边界引导的圆孔检测方法.该方法将局部三进制模式(LTP)与灰度共生矩阵(GLCM)对比度融合为纹理对比度,通过提取纹理对比度特征实现孔内纹理和孔外纹理的快速分割,得到与圆孔边界近似吻合的纹理边界,利用纹理边界的位置信息去除绝大多数非圆孔边界的边缘点,利用纹理边界的连通信息对剩余边缘点进行分组,使用内嵌圆参数统计机制的随机圆检测算法从每组边缘点各检出1个圆孔目标,进而完成对多个圆孔目标的检测.实验结果表明,在复合材料圆孔检测场景中该方法有94%以上检出率,3%以下检错率和较高的检测速度,并表现出良好的检测鲁棒性.

关键词: 局部二进制模式(LBP)局部三进制模式(LTP)灰度共生矩阵(GLCM)纹理分割圆检测机器人制孔    
Abstract:

A novel hole detection method guided by texture boundary was proposed, aiming to solve the detection problem of composite circular reference holes. The texture contrast based on local ternary pattern (LTP) and gray-level co-occurrence matrix (GLCM) was extracted first to perform the fast segmentation of intra-hole texture and out-of-hole texture, which could obtain the texture boundaries closely matching the hole boundaries. Then, the position information of texture boundaries was used to remove most of the edge points that belong to non-hole boundaries. The connectivity information of texture boundaries was used to group the remaining edge points. Finally, the randomized circle detection method with circle-parameter statistics mechanism was applied to detect a single circle from each group of edge points, which completed the detection of multiple hole targets. Experimental results showed that this method had a detection rate of more than 94%, an error rate of less than 3%, a high detection speed and good detection robustness in the composite hole detection scene.

Key words: local binary pattern (LBP)    local ternary pattern (LTP)    gray-level co-occurrence matrix (GLCM)    texture segmentation    circle detection    robotic drilling
收稿日期: 2019-10-29 出版日期: 2020-12-31
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(51675479,51805478)
通讯作者: 朱伟东     E-mail: thzhang@zju.edu.cn;wdzhu@zju.edu.cn
作者简介: 张太恒(1994—),男,硕士生,从事图像处理、机器视觉等研究. orcid.org/0000-0001-5169-0310. E-mail: thzhang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张太恒
梅标
乔磊
杨浩杰
朱伟东

引用本文:

张太恒,梅标,乔磊,杨浩杰,朱伟东. 纹理边界引导的复合材料圆孔检测方法[J]. 浙江大学学报(工学版), 2020, 54(12): 2294-2300.

Tai-heng ZHANG,Biao MEI,Lei QIAO,Hao-jie YANG,Wei-dong ZHU. Detection method for composite hole guided by texture boundary. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2294-2300.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.003        http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2294

图 1  局部二进制模式原理
图 2  纹理边界引导圆检测
图 3  对单组边缘点进行随机圆检测
图 4  不同纹理分割方法得到的纹理边界及其算法效率
纹理量化方法 对比度差值 纹理量化方法 对比度差值
原图 36 LTP 104
LBP 79 VLTP 130
表 1  不同纹理量化方法处理下孔内外纹理的对比度差值
圆孔类别 待检孔数 检出圆孔数
RCD投票 统计机制
图2 56 7 48
图4 40 23 17
表 2  RCD投票和圆参数统计机制的圆孔检出情况
图 5  VRSR、EDCircles和RCD方法下的部分实验结果可视化
圆孔
类别
检测效率/ms 检出率 检错率
VGSR EDCircles VGSR EDCircles VGSR EDCircles
F1 39.8 6.8 30/30 30/30 0/30 0/30
F2 41.6 20.1 39/43 36/43 0/43 0/43
F3 45.6 14.4 68/71 60/71 3/71 3/71
F4 46.8 13.4 46/50 36/50 2/50 8/50
F5 45.7 17.5 41/44 22/44 0/44 4/44
F6 53.0 13.9 40/40 20/40 0/40 4/40
F7 44.1 14.9 32/35 15/35 3/35 9/35
F8 42.2 16.1 54/58 21/58 0/58 0/58
F9 48.6 17.6 18/21 3/21 2/21 0/21
F10 44.7 14.3 55/56 7/56 0/56 4/56
F11 42.0 16.5 26/28 2/28 1/28 1/28
总计 44.9 15.0 94.3% 52.9% 2.3% 6.9%
表 3  VGSR与EDCircles圆孔检测性能对比
1 韦红余, 陈文亮, 蒋红宇, 等 面向现代飞机装配的长寿命机械连接技术[J]. 航空制造技术, 2009, (17): 34- 37
WEI Hong-yu, CHEN Wen-liang, JIANG Hong-yu, et al Long-life mechanical connecting technology for modern aircaft assembly[J]. Aeronautical Manufacturing Technology, 2009, (17): 34- 37
doi: 10.3969/j.issn.1671-833X.2009.17.004
2 卜泳, 许国康, 肖庆东 飞机结构件的自动化精密制孔技术[J]. 航空制造技术, 2009, (24): 61- 64
BO Yong, XU Guo-kang, XIAO Qing-dong Automatic precision drilling technology of aircraft structural part[J]. Aeronautical Manufacturing Technology, 2009, (24): 61- 64
doi: 10.3969/j.issn.1671-833X.2009.24.011
3 ZHU W D, MEI B, YAN G R, et al Development of a monocular vision system for robotic drilling[J]. Journal of Zhejiang University-Science C: Computers and Electronics, 2014, 15 (8): 593- 606
doi: 10.1631/jzus.C1300379
4 FENG X, FANG C, DING X, et al. Iris localization with dual coarse-to-fine strategy [C] // International Conference on Pattern Recognition. Hong Kong: IEEE Computer Society, 2006.
5 FLEYEH H, DAVAMI E Eigen-based traffic sign recognition[J]. IET Intelligent Transport Systems, 2011, 5 (3): 190- 196
doi: 10.1049/iet-its.2010.0159
6 廖苗, 赵于前, 曾业战, 等 基于支持向量机和椭圆拟合的细胞图像自动分割[J]. 浙江大学学报: 工学版, 2017, 51 (4): 722- 728
LIAO Miao, ZHAO Yu-qian, ZENG Ye-zhan, et al Automatic segmentation for cell images based on support vector machine and ellipse fitting[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (4): 722- 728
7 LEO M, MAZZEO P L, NITTI M Accurate ball detection in soccer images using probabilistic analysis of salient regions[J]. Machine Vision and Applications, 2013, 24 (8): 1561- 1574
doi: 10.1007/s00138-013-0518-9
8 XIAO T, LI S, WANG B, et al. Joint detection and identification feature learning for person search [C] // 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017.
9 DAHYOT R Statistical Hough transform[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (8): 1502- 1509
doi: 10.1109/TPAMI.2008.288
10 MUKHOPADHYAY P, CHAUDHURI B B A survey of Hough transform[J]. Pattern Recognition, 2015, 48 (3): 993- 1010
doi: 10.1016/j.patcog.2014.08.027
11 DUDA R O Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15 (1): 11- 15
doi: 10.1145/361237.361242
12 CHEN T C, CHUNG K L An efficient randomized algorithm for detecting circles[J]. Computer Vision and Image Understanding, 2001, 83 (2): 172- 191
doi: 10.1006/cviu.2001.0923
13 AKINLAR C, TOPAL C EDCircles: a real-time circle detector with a false detection control[J]. Pattern Recognition, 2013, 46 (3): 725- 740
doi: 10.1016/j.patcog.2012.09.020
14 TAN X, TRIGGS B Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19 (6): 1635- 1650
doi: 10.1109/TIP.2010.2042645
15 HARALICK R M Texture feature for image classification[J]. IEEE Transaction on Systems, Man, and Cybernetics, 1973, 3 (6): 610- 621
16 OJALA T, HARWOOD I A comparative study of texture measures with classification based on feature distributions[J]. Pattern Recognition, 1996, 29 (1): 51- 59
doi: 10.1016/0031-3203(95)00067-4
17 AKHLOUFI M A, BENDADA A. Locally adaptive texture features for multispectral face recognition [C] // 2010 IEEE International Conference on Systems Man and Cybernetics. Istanbul: IEEE, 2010.
18 LIAO W H, YOUNG T J. Texture classification using uniform extended local ternary patterns [C] // IEEE International Symposium on Multimedia. Taichung: IEEE, 2011.
19 侯群群, 王飞, 严丽 基于灰度共生矩阵的彩色遥感图像纹理特征提取[J]. 国土资源遥感, 2013, 25 (4): 26- 32
HOU Qun-qun, WANG Fei, YAN Li Extraction of color image texture feature based on gray-level co-occurrence matrix[J]. Remote Sensing for Land and Resources, 2013, 25 (4): 26- 32
20 ERSHAD S F. Texture classification approach based on combination of edge and co-occurrence and local binary pattern [C] // International Conference on Image Processing, Computer Vision, and Pattern Recognition. Harbin: [s.n.], 2011.
21 MALLAIAH S, DANTI A, NARASIMHAMURTHY S K Invariant of rotation and scaling for classification of arecanut based on local binary patterns[J]. International Journal of Computer Science and Software Engineering, 2013, 3 (10): 598
22 WANG G D, ZHANG P L, REN G Q, et al Texture feature extraction method fused with LBP and GLCM[J]. Computer Engineering, 2012, 38 (11): 199- 201
23 TANG Z, SU Y, ER M J, et al A local binary pattern based texture descriptors for classification of tea leaves[J]. Neurocomputing, 2015, 168: 1011- 1023
doi: 10.1016/j.neucom.2015.05.024
[1] 吴晨睿, 张树有, 何再兴. 基于梯度分类的复杂背景椭圆快速检测方法[J]. 浙江大学学报(工学版), 2018, 52(5): 943-950.
[2] 吴尧锋,王文,卢科青,魏燕定,陈子辰. 边界聚类椭圆快速检测方法[J]. 浙江大学学报(工学版), 2016, 50(3): 405-411.
[3] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[4] 陈威, 朱伟东, 章明, 赵健冬, 梅标. 叠层结构机器人制孔压紧力预测[J]. 浙江大学学报(工学版), 2015, 49(12): 2282-2289.
[5] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[6] 陈海峰 雷华 孔燕波 周柳云 冯华君. 基于最小二乘法的改进的随机椭圆检测算法[J]. J4, 2008, 42(8): 1360-1364.
[7] 屈稳太. 基于弦中点Hough变换的椭圆检测方法[J]. J4, 2005, 39(8): 1132-1135.