Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2175-2184    DOI: 10.3785/j.issn.1008-973X.2019.11.016
土木工程、市政工程     
隧道衬砌抗弯承载能力概率劣化模型
韩兴博1,2(),夏永旭1,*(),王永东1,叶飞1
1. 长安大学 公路学院,陕西 西安 710064
2. 新南威尔士大学 土木工程与环境学院,新南威尔士州 悉尼 2552
Probabilistic degradation model for tunnel lining flexural capacity
Xing-bo HAN1,2(),Yong-xu XIA1,*(),Yong-dong WANG1,Fei YE1
1. School of Highway, Chang’an University, Xi’an 710064, China
2. School of Civil and Environmental Engineering, The University of New South Wales, Sydney 2552, Australia
 全文: PDF(2166 KB)   HTML
摘要:

提出同时考虑时间效应与参数不确定性的隧道衬砌可靠度分析框架. 考虑衬砌受环境侵蚀引起的钢筋截面面积减少以及钢筋-混凝土黏结力下降,得到其抗弯承载能力时变模型. 考虑模型中参数不确定性,建立时变概率模型. 采用蒙特卡洛模拟(MCS)方法对理论模型的准确性以及计算效率进行验证. 分析模拟结果,对抗弯承载能力的分布进行讨论. 通过有限元分析,使用反转应力荷载释放法得到可靠度分析的荷载模型. 采用当量正态化(JC)法,构建隧道衬砌抗弯承载能力劣化可靠度分析框架. 通过算例对地下水氯离子侵蚀下衬砌抗弯承载能力的时变概率特征进行研究. 结果表明,随时间增长抗弯承载力的均值和标准差均减小;当初始计算变量同时存在正态变量与对数正态变量时,抗弯承载力计算结果更服从对数正态分布;衬砌负弯矩区域可靠度远高于正弯矩区域.

关键词: 隧道衬砌抗弯承载能力可靠度劣化模型有限元-蒙特卡洛模拟统计特征    
Abstract:

A reliability analysis framework with the consideration of the time influence and the uncertainties of the parameters was established. A time-variant flexural capacity model was obtained by considering the reduction of the cross-sectional area of the steel bar and the decrease of the bond strength of the steel-concrete caused by environmental erosion. A time-variant probabilistic model was established with the consideration of the uncertainties of the parameters. Accuracy and computational efficiency of the theoretical approach were investigated by using Monte-Carlo simulation (MCS) method. The distribution of the flexural capacity was also discussed through the analysis of the simulation results. The load model of the reliability analysis was established using the finite element analysis with the load reverse and stress release method. The joint committee (JC) method was used to form the degradation reliability analysis framework of the lining flexural capacity calculation. The influence of the chloride erosion on the lining time-variant and probabilistic flexural capacity was investigated by an engineering case. Results show that mean value and standard deviation of the flexural capacity both decrease with the increase of the time. The simulation data has a better agreement with the lognormal distribution than with the normal distribution when both normal and lognormal distributed variables exist. The reliability of the lining subjected to negative bending moment is higher than that of the positive bending moment.

Key words: tunnel lining    flexural capacity    reliability degradation model    finite element method-Monte-Carlo simulation    statistics characteristics
收稿日期: 2018-07-02 出版日期: 2019-11-21
CLC:  U 451  
基金资助: 国家建设高水平大学公派研究生资助项目(201706560008)
通讯作者: 夏永旭     E-mail: Xingbo.han@chd.edu.cn;yongxuxia@126.com
作者简介: 韩兴博(1991—),男,讲师,博士,从事隧道长期性能与养护研究. orcid.org/0000-0002-9919-6749. E-mail: Xingbo.han@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
韩兴博
夏永旭
王永东
叶飞

引用本文:

韩兴博,夏永旭,王永东,叶飞. 隧道衬砌抗弯承载能力概率劣化模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2175-2184.

Xing-bo HAN,Yong-xu XIA,Yong-dong WANG,Fei YE. Probabilistic degradation model for tunnel lining flexural capacity. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2175-2184.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.016        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2175

图 1  抗弯承载力计算示意图
图 2  试验梁细部示意图
编号 fcd/MPa fsd/MPa η/% Pm/kN Ps/kN
Φ12 Φ18 上缘 下缘
1 34.55 359.6 366.7 1.14 4.10 172 168.7
2 34.55 359.6 366.7 1.07 12.90 139 102.9
3 34.55 359.6 366.7 0.85 6.10 144 149.3
表 1  模型参数及试验与理论结果对比
图 3  衬砌劣化可靠度计算流程
图 4  衬砌截面钢筋构造
参数 分布类型 均值 变异系数 备注
fcd/MPa 对数正态 18.4 0.12 JCSS(2012)
As/mm2 对数正态 1 900 0.05 JCSS(2012)
Es/MPa 正态 200 0.15 JCSS(2012)
a′s/mm 正态 65 0.10 JCSS(2012)
h/mm 正态 500 0.05 JCSS(2012)
d/mm 正态 22 0.05 JCSS(2012)
Jin/(μA·cm?2 正态 0 0.10 假定
Jout/(μA·cm?2 正态 0.5 0.10 文献[4]
表 2  抗弯承载能力劣化计算参数
图 5  时变抗弯承载力概率参数
图 6  抗弯承载能力频数直方图与概率曲线(正弯矩)
图 7  抗弯承载能力频数直方图与概率曲线(负弯矩)
图 8  抗弯承载能力统计特征(正弯矩)
图 9  抗弯承载能力统计参数特征(负弯矩)
图 10  衬砌内力计算结果
图 11  抗弯承载能力可靠度与时间以及角度三维曲面
图 12  160°处可靠度指标与失效概率
1 BURGESS N, FAGENTS J, PATERSON J Northern line tunnel reconstruction at old street[J]. Proceedings of the Institution of Civil Engineers-Transport, 2002, 153 (1): 1- 11
doi: 10.1680/tran.2002.153.1.1
2 SZE A P C, CHAN C T W Application of fiber-reinforced shotcrete in repair of tunnel linings in Hong Kong[J]. ACI Special Publication, 2000, 193: 63- 78
3 CHUAN H, KUN F, QI S, et al. Consideration on issues about structural durability of shield tunnels(盾构隧道结构耐久性问题思考)[J]. 隧道建设, 2017, 37(11): 1351-1365.
4 BAJI H, LI C Q, SCICLUNA S, et al Risk-cost optimised maintenance strategy for tunnel structures[J]. Tunnelling and Underground Space Technology, 2017, 69: 72- 84
doi: 10.1016/j.tust.2017.06.008
5 LEI M F, PENG L M, SHI C H An experimental study on durability of shield segments under load and chloride environment coupling effect[J]. Tunnelling and Underground Space Technology, 2014, 42: 15- 24
doi: 10.1016/j.tust.2014.01.004
6 刘四进, 何川, 孙齐, 等 腐蚀离子环境中盾构隧道衬砌结构侵蚀劣化机理[J]. 中国公路学报, 2017, 30 (8): 125- 133
LIU Si-jin, HE Chuan, SUN Qi, et al Erosion degradation mechanism of shiled tunnel lining structure in corrosive ion environment[J]. China Journal of Highway and Transport, 2017, 30 (8): 125- 133
doi: 10.3969/j.issn.1001-7372.2017.08.014
7 ABBAS S, SOLIMAN A M, NEHDI M L Mechanical performance of reinforced concrete and steel fiber-reinforced concrete precast tunnel lining segments: a case study[J]. ACI Materials Journal, 2014, 111 (5): 501- 510
8 LIU X, YE Y H, LIU Z, et al Mechanical behavior of quasi-rectangular segmental tunnel linings: first results from full-scale ring tests[J]. Tunnelling and Underground Space Technology, 2018, 71: 440- 453
doi: 10.1016/j.tust.2017.09.019
9 LIU X, HU X Y, GUAN L X, et al The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: an experimental investigation[J]. Steel and Composite Structures, 2017, 24 (4): 481- 497
10 LIU X, ZHANG C, ZHANG C G, et al Ultimate load-carrying capacity of the longitudinal joints in segmental tunnel linings[J]. Structural Concrete, 2017, 18 (5): 693- 709
doi: 10.1002/suco.201600070
11 柳献, 唐敏, 鲁亮, 等 内张钢圈加固盾构隧道结构承载能力的试验研究:整环加固法[J]. 岩石力学与工程学报, 2013, 32 (11): 2300- 2306
LIU Xian, TANG Min, LU Liang, et al Experimental study of ultimate bearing capacity of shiled tunnel reforced by full-ring steel plate[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (11): 2300- 2306
12 LIU D J, HUANG H W, YUE Q R, et al Behaviour of tunnel lining strengthened by textile-reinforced concrete[J]. Structure and Infrastructure Engineering, 2016, 12 (8): 964- 976
doi: 10.1080/15732479.2015.1076009
13 龚琛杰, 丁文其 盾构隧道钢纤维混凝土管片接头极限承载力试验[J]. 中国公路学报, 2017, 30 (8): 134- 142
GONG Chen-jie, DING Wen-qi Experimental investigation on ultimate bearing capacity of steel fiber reinforced concrete segment joints in shield tunnels[J]. China Journal of Highway and Transport, 2017, 30 (8): 134- 142
doi: 10.3969/j.issn.1001-7372.2017.08.015
14 CAMPIONE G, CANNELLA F Engineering failure analysis of corroded RC beams in flexure and shear[J]. Engineering Failure Analysis, 2018, 86: 100- 114
doi: 10.1016/j.engfailanal.2017.12.015
15 SAETTA A V, VITALIANI R V Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures part I: theoretical formulation[J]. Cement and Concrete Research, 2004, 34 (4): 571- 579
doi: 10.1016/j.cemconres.2003.09.009
16 SAETTA A V, VITALIANI R V Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures part II. practical applications[J]. Cement and Concrete Research, 2005, 35 (5): 958- 967
17 ALMUSALLAM A A Effect of degree of corrosion on the properties of reinforcing steel bars[J]. Constr Build Mater, 2001, 15 (8): 361- 368
doi: 10.1016/S0950-0618(01)00009-5
18 CORONELLI D Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete[J]. ACI Structural Journal, 2002, 99 (3): 267- 276
19 GAO W, KESSISSOGLOU N J Dynamic response analysis of stochastic truss structures under non-stationary random excitation using the random factor method[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196 (25–28): 2765- 2773
doi: 10.1016/j.cma.2007.02.005
20 GAO W, SONG C M, TIN-LOI F Probabilistic interval analysis for structures with uncertainty[J]. Structural Safety, 2010, 32 (3): 191- 199
doi: 10.1016/j.strusafe.2010.01.002
21 WU D, GAO W, TANGARAMVONG S, et al Robust stability analysis of structures with uncertain parameters using mathematical programming approach[J]. International Journal for Numerical Methods in Engineering, 2014, 100 (10): 720- 745
doi: 10.1002/nme.4758
22 WU B H, WU D, GAO W, et al Time-variant random interval response of concrete-filled steel tubular composite curved structures[J]. Composites Part B: Engineering, 2016, 94: 122- 138
doi: 10.1016/j.compositesb.2016.03.029
23 PAN Z A F, FU C C, JIANG Y Uncertainty analysis of creep and shrinkage effects in long-span continuous rigid frame of sutong bridge[J]. Journal of Bridge Engineering, 2011, 16 (2): 248- 258
doi: 10.1061/(ASCE)BE.1943-5592.0000147
24 AI Q, YUAN Y, MAHADEVAN S, et al Probabilistic degradation modelling of circular tunnels assembled from segmental linings[J]. Structural Concrete, 2016, 17 (2): 257- 273
doi: 10.1002/suco.201400122
25 李晓军, 陈雪琴, 朱合华 基于Spreadsheet法的盾构衬砌截面可靠度分析[J]. 岩土工程学报, 2013, 35 (9): 1642- 1649
LI Xiao-jun, CHEN Xue-qing, ZHU He-hua Reliability analysis of shield lining sections using Spreadsheet method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (9): 1642- 1649
26 袁勇, 赵庆丽 盾构隧道衬砌截面的承载能力功能函数[J]. 铁道工程学报, 2009, 5 (5): 59- 63
YUAN Yong, ZHAO Qin-li Functions for the bearing capacity of lining cross-section of shield tunnel[J]. Journal of Railway Engineering Society, 2009, 5 (5): 59- 63
doi: 10.3969/j.issn.1006-2106.2009.05.015
27 ALSULAIMANI G J, KALEEMULLAH M, BASUNBUL I A, et al Influence of corrosion and cracking on bond behavior and strength of reinforced-concrete members[J]. ACI Structural Journal, 1990, 87 (2): 220- 231
28 CORONELLI D, GAMBAROVA P Structural assessment of corroded reinforced concrete beams: Modeling guidelines[J]. Journal of Structural Engineering, 2004, 130 (8): 1214- 1224
doi: 10.1061/(ASCE)0733-9445(2004)130:8(1214)
29 CORONELLI D, HANJARI K Z, LUNDGREN K Severely corroded RC with cover cracking[J]. Journal of Structural Engineering-ASCE, 2013, 139 (2): 221- 232
doi: 10.1061/(ASCE)ST.1943-541X.0000633
30 TING S C, NOWAK A S Effect of reinforcing steel area loss on flexural behavior of reinforced-concrete beams[J]. ACI Structural Journal, 1991, 88 (3): 309- 314
31 徐善华. 混凝土结构退化模型与耐久性评估 [D]. 西安: 西安建筑科技大学, 2003.
XU Shan-hua. The model of deterioration and durability evaluation of reinforced concrete structure [D]. Xi′an: Xi′an University of Architecture Technology, 2003.
32 吕毅刚, 张建仁, 彭晖, 等 锈蚀钢筋混凝土双筋矩形梁抗弯承载力分析[J]. 实验力学, 2011, 26 (4): 471- 477
LV Yi-gang, ZHANG Jian-ren, PENG Hui, et al Analysis of the flexual bearing capacity of corroded reinforced concrete beams with double reinforced rectangular section[J]. Journal of Experimental Mechanics, 2011, 26 (4): 471- 477
33 中华人民共和国交通运输部. 公路隧道设计规范: JTGD70-2004 [S]. 北京: 人民交通出版社, 2004.
[1] 黄伟明,王金昌,徐日庆,杨仲轩,徐荣桥. 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报(工学版), 2020, 54(4): 787-795.
[2] 王薇, 刘讴, 曹琨, 徐志胜. 火灾下隧道衬砌混凝土细观损伤演化[J]. 浙江大学学报(工学版), 2018, 52(5): 906-913.