Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1345-1353    DOI: 10.3785/j.issn.1008-973X.2018.07.015
土木工程、交通工程     
新型履带式全方位移动平台运动分析
杨怀彬1, 张豫南1, 黄涛2, 房远1, 张骞1, 张杰1
1. 陆军装甲兵学院 兵器与控制系, 北京 100072;
2. 63983部队, 江苏 无锡 214035
Motion analysis of novel track omnidirectional platform
YANG Huai-bin1, ZHANG Yu-nan1, HUANG Tao2, FANG Yuan1, ZHANG Qian1, ZHANG Jie1
1. Weaponry and Control Department, Army Academy of Armored Forces, Beijing 100072, China;
2. Unit 63983 of PLA, Wuxi 214035, China
 全文: PDF(2154 KB)   HTML
摘要:

为了改善轮式全方位移动平台路面适应性、载重等方面的不足,基于全方位履带结构,采用与传统履带车辆类似的对称布局形式,设计新型的履带式全方位移动平台.根据平台布局特点,确定最优布局形式,建立运动学和动力学模型,分析平台运动的各向相异性.以中心转向运动为例进行对比分析可知,全方位平台转向滑动摩擦力矩和驱动力矩均减小.为了确保全方位平台具备和传统履带平台相同的转向能力,确定平台设计应满足的几何条件.根据设计原则,利用ADAMS软件建立平台虚拟样机,对平台纵向直行、横向直行、45°斜行、中心转向运动、E级不平路面和爬越楼梯进行仿真.仿真结果表明,该平台具备全方位移动性能和较好的路面适应性.

Abstract:

A novel track omnidirectional platform was designed based on the structure of omnidirectional track by applying the symmetrical layout form similar to traditional track vehicle in order to improve the shortage of current wheeled omnidirectional platform in the aspects of loading and road adaptability. The optimal layout was determined and its kinematics model, dynamics model were established to analyze the anisotropy according to the characteristics of platform layout. The comparison of central steering motion showed that the sliding friction torque and the driving torque were all reduced. The geometric requirements in the platform designing were determined in order to ensure omnidirectional platform has the same steering performance with the traditional track platform. The virtual prototype was developed in ADAMS based on the rule of designing. The dynamics model were simulated:longitudinal motion, lateral motion, 45 degree diagonal motion, central steering motion, E-road and stairs. The simulation results show that the novel platform has omnidirectional mobile ability and better road adaptability.

收稿日期: 2017-04-23 出版日期: 2018-06-26
CLC:  U270  
基金资助:

国防重点资助项目(2015ZB15).

通讯作者: 张豫南,男,教授.orcid.org/0000-0002-5850-3124.     E-mail: zhang_yunan@sina.com
作者简介: 杨怀彬(1988-),男,博士生,从事导航、制导与控制研究.orcid.org/0000-0001-5681-5434.E-mail:254993673@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨怀彬, 张豫南, 黄涛, 房远, 张骞, 张杰. 新型履带式全方位移动平台运动分析[J]. 浙江大学学报(工学版), 2018, 52(7): 1345-1353.

YANG Huai-bin, ZHANG Yu-nan, HUANG Tao, FANG Yuan, ZHANG Qian, ZHANG Jie. Motion analysis of novel track omnidirectional platform. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1345-1353.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.015        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1345

[1] 孙强,王文涛,周璇.基于kinect传感器的全方位运输平台控制系统研究[J].电子设计工程,2015, 23(24):99-102. SUN Qiang, WANG Wen-tao, ZHOU Xuan. Development of omnidirectional mobile system based on thekinect sensor[J]. Electronic Design Engineering, 2015, 23(24):99-102.
[2] 曹其新,杜建军,冷春涛,等.用于协作搬运的全方位移动式多AGV系统[J].华中科技大学学报:自然科学版, 2013, 41(增Ⅰ):550-556. CAO Qi-xin, DU Jian-jun, LENG Chun-tao, et al. Omnidirectional moving multi-AGVs system for cooperation transport[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2013, 41(supple.Ⅰ):550-556.
[3] CAVESTANY P, RODRIGUEZ A L, MARTINEZ H, et al. Improved 3D sparse maps for high-performance SFM with low-cost omnidirectional robots[C]//IEEE International Conference on Image Processing. Quebec City:IEEE, 2015:4927-4931.
[4] JIANG S Y, LIN C Y, HUANG K T, et al. Shared control design of a walking-assistant robot[J]. IEEE Transactions on Control Systems Technology, 2017(99):1-8.
[5] 叶长龙,佟泽卉,于苏洋,等.全方位移动装配机器人运动学分析[J].机器人,2016,38(5):550-556. YE Chang-long, TONG Ze-hui, YU Su-yang, et al. Kinematic analysis of an omnidirectional mobile assembly robot[J]. Robot, 2016, 38(5):550-556.
[6] 刘勇.狭小空间内的全向移动平台关键技术研究[D].镇江:江苏科技大学,2016. LIU Yong. Research on omnidirectional mobile platform in narrow workspace[D]. Zhenjiang:Jiangsu University of Science and Technology, 2016.
[7] 杨天旭.全方位移动AGV智能控制技术研究[D].南京:南京航空航天大学,2016. YANG Tian-xu. Intelligent control technology for the omnidirectional mobile AGV[D]. Nanjing:NanjingUniversity of Aeronautics and Astronautics, 2016.
[8] 王双双.全方位移动平台运动仿真与控制研究[D].北京:装甲兵工程学院,2012. WANG Shuan-shuang. Research on simulation and motion control of omnidirectional platform[D]. Beijing:Academy of Armored Force Engineering, 2012.
[9] 王一治,钱晋武,常德功.不平路面上Mecanum轮全方位运动系统通用运动学模型[J].机械工程学报,2009,45(9):77-82. WANG Yi-zhi, QIAN Jin-wu, CHANG De-gong. General kinematics model of motion system with Mecanum wheels on uneven floor[J]. Journal of Mechanical Engineering, 2009, 45(9):77-82.
[10] 王一治.适于楼宇环境的全方位移动技术研究[D].上海:上海大学,2009. WANG Yi-zhi. Research on omnidirectional moving technology for building environment[D]. Shanghai:Shanghai University, 2009.
[11] 陶俊杰,臧红彬,蔡勇.新型多功能越障机器人设计与功能仿真[J].机械设计与制造,2016(1):228-237. TAO Jun-jie, ZANG Hong-bin, CAI Yong. Design and functional simulation of a multi-functional obstacle robot[J]. Machinery Design and Manufacture,2016(1):228-237.
[12] 田鹏.8×8全方位移动平台运动性能仿真及控制研究[D].北京:装甲兵工程学院,2013. TIAN Peng. Research on motion performance simulation and control of the 8×8 omnidirectional platform[D]. Beijing:Academy of Armored Force Engineering, 2013.
[13] WEST M, ASADA H. Design of a holonomic omnidirectional vehicle[C]//Proceedings of the 1992 International Conference on Robotics and Automation. Nice:IEEE, 1992:97-103.
[14] TADAKUMA K, TADAKUMA R, KINOSHITA H, et al. Mechanical design of cylindrical track for sideways motion[C]//Proceedings of 2008 IEEE International Conference on Mechatronics and Automation. Takamatsu:IEEE, 2008:161-167.
[15] DAMOTO R, CHENDY W, HIROSE S. Holonomic omnidirectional vehicle with new omniwheel mechanism[C]//Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul:IEEE, 2001:773-778.
[16] CHEN P, MITSUTAKE S, ISODA T, et al. Omni-directional robot and adaptive control method for off-road running[J]. IEEE Transactions on Robotics and Automation, 2002, 18(2):251-256.
[17] ZHANG Y N, HUANG T. Research on a tracked omnidirectional and cross-country vehicle[J]. Mechanism and Machine Theory, 2015, 87:18-44.
[18] 冷春涛,曹其新.四轮全方位移动机器人各向相异性研究[J].智能系统学报,2007,2(3):45-51. LENG Chun-tao, CAO Qi-xin. Anisotropy of 4-wheeled omnidirectional mobile robots[J]. CAAI Transactions on Intelligent Systems, 2007, 2(3):45-51.
[19] 王良曦,王红岩.车辆动力学[M].北京:国防工业出版社,2008:111-124.
[20] 闫清东,张连第,赵毓芹,等.坦克构造与设计[M].北京:北京理工大学出版社,2007:570-573.
[21] GB/T 7301-2005,机械振动道路路面谱测量数据报告[S].北京:中国标准出版社,2005:19-24.
[22] 喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2008:140-150.

[1] 何娇, 杨志刚, 谭晓明, 张代娇, 吴晓龙. 160 km/h地铁列车头型气动阻力优化[J]. 浙江大学学报(工学版), 2017, 51(10): 2030-2038.