Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (10): 2030-2038    DOI: 10.3785/j.issn.1008-973X.2017.10.018
土木工程、交通工程     
160 km/h地铁列车头型气动阻力优化
何娇, 杨志刚, 谭晓明, 张代娇, 吴晓龙
中南大学 交通运输工程学院, 轨道交通安全教育部重点实验室, 湖南 长沙 410075
Aerodynamic drag optimization of subway train head with speed of 160 km/h
HE Jiao, YANG Zhi-gang, TAN Xiao-ming, ZHANG Dai-jiao, WU Xiao-long
Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
 全文: PDF(2112 KB)   HTML
摘要:

采用三维、瞬态、可压缩N-S方程和k-湍流模型及滑移网格技术的数值仿真方法,研究隧道内地铁列车头型几何参数对列车气动阻力的影响规律及气动阻力对头型几何参数的敏感性.对80 km/h地铁列车头型进行气动阻力优化,获取160 km/h优化模型.结果表明:当阻塞比约为0.45时,隧道气动阻力是明线的3倍;当头型长度L ≤ 5 m时,气动阻力与头型长度符合对数关系,综合考虑敏感性与气动阻力,头型长度选择3.0~4.0 m较合适;车体横截面积对列车气动阻力的影响较大,且灵敏度很高,可以适当减小横截面积,以降低列车气动阻力;当头型长度L=3 m时,考虑气动阻力及敏感性,俯视轮廓线等效长度选为(2.68±0.01) m,纵向轮廓线等效长度选为(2.32±0.005) m较合适.通过参数研究,优化后的列车模型在明线工况下整车气动阻力下降3.7%.

Abstract:

The influence of the head parameters on the aerodynamic drag and the sensitivity of the aerodynamic drag to the head parameters were analyzed based on N-S equation of the compressible viscous fluid, k- turbulence model and the sliding mesh technique in order to optimize the aerodynamic drag of the 80 km/h subway train. The calculation results show that the aerodynamic drag in the tunnel is three times of the aerodynamic drag in the open field at the blocking ratio about 0.45. When the head length is less than or equal to 5 meters, the aerodynamic drag is in logarithmic relation with the head length. The length of the head is chosen between 3 and 4 meters after a systematic consideration. The cross-sectional area can be appropriately reduced in order to reduce the aerodynamic resistance, because the cross-sectional area has greater impact on the train aerodynamic drag and aerodynamic resistance on the cross-street area sensitivity is high. Considering the aerodynamic drag and sensitivity, the equivalent length of the contour line is (2.68±0.01) m and the equivalent length of longitudinal contour is (2.32±0.005) m when the head length is 3 m. The aerodynamic drag of the 160 km/h optimized train model was reduced by 3.7% under open field compared to the original model.

收稿日期: 2017-02-14 出版日期: 2017-09-27
CLC:  U270  
基金资助:

国家科技支撑计划资助项目(2015BAG12B01-24).

通讯作者: 杨志刚,男,讲师.     E-mail: yangzg@csu.edu.cn
作者简介: 何娇(1991-),女,硕士生,从事高速列车的研究.ORCID:0000-0002-1875-5220.E-mail:1143910210@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

何娇, 杨志刚, 谭晓明, 张代娇, 吴晓龙. 160 km/h地铁列车头型气动阻力优化[J]. 浙江大学学报(工学版), 2017, 51(10): 2030-2038.

HE Jiao, YANG Zhi-gang, TAN Xiao-ming, ZHANG Dai-jiao, WU Xiao-long. Aerodynamic drag optimization of subway train head with speed of 160 km/h. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 2030-2038.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.10.018        http://www.zjujournals.com/eng/CN/Y2017/V51/I10/2030

[1] JURAEVA M, LEE J, SONG D J. A computationalanalysis of the train-wind to identify the best position for the air-curtain installation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(5):554-559.
[2] 汪波,李军,杨国纪,等.快速地铁列车不同司机室头型空气动力学影响分析[J].电力机车与城轨车辆,2015, 38(4):36-39. WANG Bo, LI Jun, YANG Guo-ji, et al. Analysis on aerodynamics of rapid metro vehicles with different cab shapes[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38(4):36-39.
[3] 刘凤华,余以正.地铁列车隧道气动力学试验与仿真[J].大连交通大学学报,2013, 34(4):7-11. LIU Feng-hua,YU Yi-zheng. Comparison of subway train tunnel aerodynamic test and simulation analysis[J]. Journal of Dalian Jiaotong University, 2013, 34(4):7-11.
[4] 熊骏,朱冬进,徐世南,等.裙板结构对地铁车辆气动性能的影响[J].铁道车辆,2015, 53(3):16-20. XIONG Jun, ZHU Dong-jin, XU Shi-nan, et al. Effect of the apron structure on aerodynamic performance of metro vehicles[J]. Rolling Stock, 2015, 53(3):16-20.
[5] MUOZ-PANIAGUA J, GARCÍA J, CRESPO A. Genetically aerodynamic optimization of the nose shape of a high-speed train entering a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 130(7):48-61.
[6] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6):277-298.
[7] 孔繁冰,李明,韩璐,等.CRH380BL高速动车组气动外形优化设计[J].铁道机车车辆,2013, 32(6):9-12. KONG Fan-bing, LI Ming, HAN Lu, et al. Optimization design of aerodynamic shape for CRH380BL EMU[J]. Railway Locomotive and Car, 2013, 32(6):9-12.
[8] KIM J Y, KIM K Y. Experimental and numerical analyses of train-induced unsteady tunnel flow in subway[J]. Tunneling and Underground Space Technology, 2007,22(2):166-172.
[9] HUANG Y D, GAO W. A numerical study of the train-induced unsteady airflow in a subway tunnel with natural ventilation ducts using the dynamic layering method[J]. Journal of Hydrodynamics, 2010, 22(2):164-172.
[10] HUANG Y, GONG X, PENG Y, et al. Effects of the ventilation duct arrangement and duct geometry on ventilation performance in a subway tunnel[J]. Tunneling and Underground Space Technology, 2011, 26(6):725-733.
[11] 祝岚,张东,苏振旭,等.基于乘客舒适性的快速地铁隧道压力波分析[J].都市快轨交通,2015, 28(1):87-91. ZHU Lan, ZHANG Dong, SU Zhen-xu, et al. Analysis of pressure waves of high-speed subway tunnel based on passenger comfort[J]. Urban Rapid Rail Transit, 2015, 28(1):87-91.
[12] KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12):1187-1196.
[13] GONZÁLEZ M L, VEGA M G, ORO J M F, et al. Numerical modeling of the piston effect in longitudinal ventilation systems for subway tunnel[J]. Tunneling and Underground Space Technology, 2014, 40(2):22-37.
[14] CHOI J K, KIM K H. Effects of nose shape and tunnel cross-sectional area on aerodynamic drag of train traveling in tunnels[J]. Tunneling and Underground Space Technology, 2014, 41(3):62-73.
[15] 田红旗.列车空气动力学[M].北京:中国铁道出版社, 2007:214-265.
[16] 梁习锋,田红旗. 列车气动性能评估参数研究[J].中国铁道科学, 2003, 24(1):38-42. LIANG Xi-feng, TIAN Hong-qi. Research on evaluating parameters of train aerodynamic performance[J]. China Railway Science, 2003, 24(1):38-42.
[17] 张在中,周丹.不同头部外形高速列车气动性能风洞试验研究[J].中南大学学报:自然科学版, 2013, 44(6):2603-2608. ZHANG Zai-zhong, ZHOU Dan. Wind tunnel experiment on aerodynamic characteristic of streamline head of high speed train with different head shapes[J]. Journal of Central South University:Science and Technology, 2013, 44(6):2603-2608.
[18] 张洁,梁习锋,刘堂红,等.强侧风作用下客车车体气动外形优化[J].中南大学学报:自然科学版, 2011, 42(11):356-362. ZHANG Jie, LIANG Xi-feng, LIU Tang-hong, et al. Optimization research on aerodynamic shape ofpassenger car body with strong crosswind[J]. Journal of Central South University:Science and Technology, 2011, 42(11):356-362.
[19] 姚拴宝,郭迪龙,孙振旭,等.基于Kriging代理模型的高速列车头型多目标优化设计[J]. 中国科学:技术科学, 2013, 43(2):186-200. YAO Shuan-bao, GUO Di-long, SUN Zhen-xu, et al. Multi-objective optimization of the streamlined head of high-speed trains based on the Kriging model[J]. Science China:Technology Science, 2013, 43(2):186-200.
[20] 杜健,龚明,田爱琴,等.基于仿生非光滑沟槽的高速列车减阻研究[J].铁道科学与工程学报, 2014,11(5):70-76. DU Jian, GONG Ming, TIAN Ai-qin, et al. Study on the drag reduction of the high-speed train based on the bionic non-smooth riblets[J]. Journal of Railway Science and Engineering, 2014, 11(5):70-76.
[21] 建设部.地铁设计规范:GB50157-2003[S]. 北京:中国计划出版社,2003:12-20.

[1] 杨怀彬, 张豫南, 黄涛, 房远, 张骞, 张杰. 新型履带式全方位移动平台运动分析[J]. 浙江大学学报(工学版), 2018, 52(7): 1345-1353.