Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (9): 1760-1769    DOI: 10.3785/j.issn.1008-973X.2017.09.010
计算机技术     
水下滑翔机的机翼位置与螺旋运动关系分析
刘友1,2, 沈清2, 马东立1, 袁湘江2
1. 北京航空航天大学 航空科学与工程学院, 北京 100191;
2. 中国航天空气动力技术研究院, 北京 100074
Relationship of wing location and helical motion for underwater glider
LIU You1,2, SHEN Qing2, MA Dong-li1, YUAN Xiang-jiang2
1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
2. China Academy of Aerospace Aerodynamics(CAAA), Beijing 100074, China
 全文: PDF(2960 KB)   HTML
摘要:

建立水下滑翔机稳态螺旋运动的数学模型,采用数值方法求解该模型,得出对应5个机翼位置的滑翔机螺旋运动特性.结果表明,水下滑翔机螺旋运动的形式随着机翼位置的变化而变化.存在一个过渡性区域("分水岭"区域),当机翼位于这个区域前面时,水下滑翔机转向方向与机翼升力侧向分量方向一致,滑翔机按照正螺旋方式转向;当机翼位于这个区域后面时,水下滑翔机转向方向与机翼升力侧向分量方向相反,滑翔机按照反螺旋方式转向;当机翼位于这个区域内时,滑翔机的转弯方向具有不确定性,并与重心位置有关.无论滑翔机按照何种方式转弯,机翼离这个区域越远,转弯的速率就越高.湖中实验结果表明:机翼位置可以影响螺旋运动的转弯方向,且稳态试验数据与数值理论结果的误差≤ 15%.

Abstract:

A mathematical model was constructed to describe the helical motion of underwater glider at steady state. Using the numerical method, the helical motion features of underwater glider were achieved corresponding to five wing locations. Numerical results indicate that the helical motion pattern of underwater glider changes with the wing location. And there is a transitional zone ("watershed" zone) determining the turning direction of underwater glider at steady state. The gliders with wing locations ahead of the zone turn in the same direction of lateral component of lift produced by wing and work in positive helical pattern. However, the gliders with wing locations behind the zone turn in the reverse direction of lateral component of lift produced by wing and work in anti-helical pattern. The glider with wing location within the zone can turn in any of the two directions dependent on its CG (centre of gravity) location. Furthermore, the gliders with wing locations far away from the zone turn faster than those with wing locations near it. The in-lake experiments indicate that wing location can affect the turning direction of helical motion and the percentage error between numerical results and experiment data at steady stage is less than 15%.

收稿日期: 2016-12-14 出版日期: 2017-08-25
CLC:  TP24  
通讯作者: 袁湘江,男,研究员.orcid.org/0000-0002-1862-1652.     E-mail: yuan_xj18@163.com
作者简介: 刘友(1988-),男,博士生,从事水下机器人、自动控制以及人工智能研究.orcid.org/0000-0003-0349-7158.E-mail:542165262@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘友, 沈清, 马东立, 袁湘江. 水下滑翔机的机翼位置与螺旋运动关系分析[J]. 浙江大学学报(工学版), 2017, 51(9): 1760-1769.

LIU You, SHEN Qing, MA Dong-li, YUAN Xiang-jiang. Relationship of wing location and helical motion for underwater glider. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1760-1769.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.09.010        http://www.zjujournals.com/eng/CN/Y2017/V51/I9/1760

[1] STOMMEL H. The slocum mission[J]. Oceanog-raphy, 1989, 2(1):22-25.
[2] WEBB D C, SIMONETTI P J, JONES C P. Slocum:an underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001,26(4):447-452.
[3] SHERMAN J, DAVIS R E, OWENS W B, et al. The autonomous underwater glider "Spray"[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4):437-446.
[4] ERIKSEN C C, OSSE T J, LIGHT R D, et al. Seag-lider:a long range autonomous underwater vehicle foroceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4):424-436.
[5] ALVAREZ A, CAFFAZ A, CAITI A, et al. Fòlaga:a low-cost autonomous underwater vehicle combining glider and AUV capabilities[J]. Journal of Ocean Engineering, 2009, 36(1):24-38.
[6] PHOEMSAPTHAWEE S,LEBOULLUEC M, LAURENS J M, et al. Numerical study on hydrodyn-amic behavior of an underwater glider[C]//ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers. Rotterdam:ASME, 2011:521-526.
[7] ZHANG F, TAN X. Tail-enabled spiraling maneuver for gliding robotic fish[J]. Journal of Dynamic Systems Measurement and Control, 2014, 136(4):041028.
[8] ZHANG F, TAN X. Passivity-based stabilization of underwater gliders with a control surface[J]. Journal of Dynamic Systems Measurement and Control, 2015,137(6):061006.
[9] ISA K, ARSHAD M R, ISHAK S. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control[J]. Ocean Engineering, 2014, 81(2):111-129.
[10] YU J C, ZHANG A Q, JIN W M, et al. Development and experiments of the sea-wing underwater glider[J]. China Ocean Engineering, 2011, 25(4):721-736.
[11] WANG Y H, WANG S X. Dynamic modeling and three-dimensional motion analysis of underwater gliders[J]. China Ocean Engineering, 2009, 23(3):489-504.
[12] WANG S, SUN X, WANG Y, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider[J]. China Ocean Engineering, 2011, 25(1):97-112.
[13] PHOEMSAPTHAWEE S, BOULLUEC M L, LAURENS J M, et al. A potential flow based flight simulator for an underwater glider[J]. Journal of Marine Science and Application, 2013, 12(1):112-121.
[14] LIU Y, SHEN Q, MA D, et al. Theoretical and experimental study of anti-helical motion for underwater glider[J]. Applied Ocean Research, 2016, 60:121-140.
[15] FAN S S, YANG C J, PENG S L, et al. Underwater glider design based on dynamic model analysis and prototype development[J]. Frontiers of Information Technology and Electronic Engineering, 2013, 14(8):583-599.
[16] DANTAS J L D, BARROS E A D. Numerical analysis of control surface effects on AUV manoeuvrability[J]. Journal of Applied Ocean Research, 2013, 42(42):168-181.
[17] BHATTA P. Nonlinear stability and control of gliding vehicles[D]. Princeton:Princeton University, 2006.
[18] LEONARD N E,GRAVER J G. Model based feedback control of autonomous underwater gliders[J]. IEEE Journal of Oceanic Engineering, 2001,26(4):633-645.
[19] 施生达.潜艇操纵性[M].北京:国防工业出版社,1995:19-42.
[20] 孙秀军.混合驱动水下滑翔器动力学建模及运动控制研究[D].天津:天津大学,2011. SUN Xiu-jun. Dynamic modeling and motion control for a hybrid-driven underwater glider[D]. Tianjin:Tianjin University, 2011.

[1] 王晨学, 平雪良, 徐超. 解决约束平面偏移问题的机械臂闭环标定[J]. 浙江大学学报(工学版), 2018, 52(11): 2110-2119.
[2] 赵晓东, 刘作军, 陈玲玲, 杨鹏. 下肢假肢穿戴者跑动步态识别方法[J]. 浙江大学学报(工学版), 2018, 52(10): 1980-1988.
[3] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[4] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[5] 都明宇, 鲍官军, 杨庆华, 王志恒, 张立彬. 基于改进支持向量机的人手动作模式识别方法[J]. 浙江大学学报(工学版), 2018, 52(7): 1239-1246.
[6] 陈迪剑, 徐一展, 王斌锐. 基于双生成函数的步行机器人最优步态生成[J]. 浙江大学学报(工学版), 2018, 52(7): 1253-1259.
[7] 秦超, 梁喜凤, 路杰, 彭明, 金超杞. 七自由度番茄收获机械手的轨迹规划与仿真[J]. 浙江大学学报(工学版), 2018, 52(7): 1260-1266.
[8] 李中雯, 王斌锐, 陈迪剑. 有并联脊柱的四足机器人步态规划[J]. 浙江大学学报(工学版), 2018, 52(7): 1267-1274.
[9] 柯显信, 张文朕, 杨阳, 温雷. 仿人机器人多传感器定位系统[J]. 浙江大学学报(工学版), 2018, 52(7): 1247-1252.
[10] 李泚泚, 田国会, 张梦洋, 张营. 基于本体的物品属性类人认知及推理[J]. 浙江大学学报(工学版), 2018, 52(7): 1231-1238.
[11] 王禹, 韦巍. 采用频域Prony方法估计信号重叠双分量[J]. 浙江大学学报(工学版), 2018, 52(6): 1157-1166.
[12] 张铁, 梁骁翃. 平面关节型机器人关节力矩的卡尔曼估计[J]. 浙江大学学报(工学版), 2018, 52(5): 951-959.
[13] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[14] 王扬威, 兰博文, 刘凯, 赵东标. 形状记忆合金丝驱动的柔性机械臂建模与实验[J]. 浙江大学学报(工学版), 2018, 52(4): 628-634.
[15] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386.