Please wait a minute...
浙江大学学报(工学版)
能源工程     
筛板塔细颗粒物协同脱除特性实验
张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法
1.浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027;
2. 浙江能源集团有限公司,浙江 杭州310006
Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber
ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
2. Zhejiang Provincial Energy Group Company Co., Ltd. Hangzhou 310006, China
 全文: PDF(1327 KB)   HTML
摘要:

针对常规喷淋空塔无法满足颗粒物协同控制的难题,提出筛板塔强化传质实现协同脱除的方法.基于湿法烟气脱硫中试试验平台,考察湿法烟气脱硫关键工艺参数,包括烟气流速、浆液喷淋量、飞灰浓度、颗粒粒径等对细颗粒物脱除效率的影响规律,并与喷淋空塔脱除特性进行对比.结果表明,在实验工况下,细颗粒物脱除效率大于90%,最高超过95%|脱除效率随烟气流速、颗粒物浓度及浆液喷淋量的增大而提高.颗粒物分级脱除效率曲线呈“V”形分布特性,在0.2~1.0 μm粒径范围内脱除效率最低|在相同条件下,筛板塔细颗粒物脱除效果显著优于喷淋塔,在0.2~1.0 μm粒径段的脱除效率与总脱除效率较喷淋塔分别提高11%和5%以上.

Abstract:

A new sieve stray spray scrubber, which can promote the mass transfer of gas-liquid-solid system, was proposed in order to improve the fine particle removal efficiency in wet flue gas desulfurization (FGD) system.A pilot-scale wet FGD system was developed to study the removal characteristics of fine particles.The effects of flue gas flow rate, liquid flow rate, fly-ash loading and particle size on the fine particle removal efficiency were investigated.Results show that the fine particle removal efficiency is higher than 90% under typical working condition, of which the maximum exceeds 95%. The removal efficiency increases with the increase of flue gas flow rate, liquid flow rate and the concentration of particles.The fractional removal efficiency is a V-shaped curve with a minimum at 0.2 to 1.0 μm. The sieve tray spray scrubber has a better performance than the ordinary spray scrubber under the same conditions; the total removal efficiency and removal efficiency at 0.2-1.0 μm can be improved more than 5% and 11%, respectively.

出版日期: 2016-08-01
:  X 511  
基金资助:

浙江省重大科技专项计划资助项目(2014C03018); 国家杰出青年科学基金资助项目(51125025).

通讯作者: 高翔,男,教授. ORCID: 0000-0002-1732-2132.     E-mail: xgao1@zju.edu.cn
作者简介: 张军(1990—), 男, 博士生, 从事燃煤电厂大气污染物控制技术等研究. ORCID: 0000-0001-7096-0064. E-mail: stenpher@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法. 筛板塔细颗粒物协同脱除特性实验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.08.013.

ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.08.013.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.08.013        http://www.zjujournals.com/eng/CN/Y2016/V50/I8/1516

[1] GILMOUR P S, BROWN D M, LINDSAY T G, et al. Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical [J]. Occupational and Environmental Medicine, 1996, 53(12): 817-822.
[2] 高翔鹏,徐明厚,姚洪,等. 燃煤锅炉可吸入颗粒物排放特性及其形成机理的试验研究[J]. 中国电机工程学报,2007,27(17): 11-17.
GAO Xiangpeng, XU Minghou, YAO Hong, et al. Experimental study on emission characteristics and formation mechanisms of PM10 from a coalfired boiler [J]. Proceedings of the CSEE, 2007,27(17): 11-17.
[3] 王珲,宋蔷,姚强,等. 电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J]. 中国电机工程学报,2008,28(05): 17.
WANG Hui, SONG Qiang, YAO Qiang, et al. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coalfired power plant[J]. Proceedings of the CSEE, 2008,28(05): 17.
[4] BRACHERT L, KOCHENBURGER T, SCHABER K. Facing the sulfuric acid aerosol problem in flue gas cleaning: pilot plant experiments and simulation [J]. Aerosol Science and Technology, 2013, 47(10): 1083-1091.
[5] SRIVASTAVA R K, MILLER C A, ERICKSON C, et al. Emissions of sulfur trioxide from coalfired power plants [J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762.
[6] MEIJ R, TE WINKEL B. The emissions and environmental impact of PM10 and trace elements from a modern coalfired power plant equipped with ESP and wet FGD [J].Fuel Processing Technology, 2004, 85(6): 641-656.
[7] BAO Jingjing, YANG Linjun, YAN Jinpei, et al. Experimental study of fine particles removal in the desulfurated scrubbed flue gas [J]. Fuel, 2013, 108(11): 73-79.
[8] 鲍静静,杨林军,颜金培,等. 湿法烟气脱硫系统对细颗粒脱除性能的实验研究[J]. 化工学报,2009,60(05): 1260-1267.
BAO Jingjing, YANG Linjun, YAN Jinpei, et al. Performance of removal of fine particles by WFGD system [J]. CIESC Journal, 2009,60(05): 1260-1267.
[9] 熊桂龙,杨林军,颜金培,等.蒸汽相变与撞击流耦合促进细颗粒物脱除[J]. 东南大学学报:自然科学版,2011,41(4): 761-766.
XIONG Guilong, YANG Linjun, YAN Jinpei, et al. Improving removal of fine particles by coupling heterogeneous condensation with impinging streams [J]. Journal of southeast university :Natural Science Edition, 2011,41(4): 761-766.
[10] 赵汶,刘勇,鲍静静,等. 化学团聚促进燃煤细颗粒物脱除的试验研究[J]. 中国电机工程学报,2013,33(20): 525811.
ZHAO Wen, LIU Yong, BAO Jingjing, et al. Experimental research on fine particles removal from flue gas by chemical agglomeration [J]. Proceedings of the CSEE, 2013,33(20): 525811.
[11] KIM H G, KIM H J, LEE M H, et al. Experimental study on the enhancement of particle removal efficiency in spray tower scrubber using electrospray [J]. Asian Journal of Atmospheric Environment, 2014, 8(2): 89-95.
[12] 陈海林,杨春平,甘海明,等. 螺旋型垂直筛板布气的喷射鼓泡脱硫除尘塔的研制和性能[J]. 环境科学学报,2010,30(2): 294-301.
CHEN Hailin, YANG Chunping, GAN Haiming, et al. Development and evaluation of a jet bubble reactor using vertical sieves in a spiral housing as a gas in jet device for dust removal and desulfurization [J]. Acta Scientiae Circumstantiae, 2010, 30(2): 294-301.
[13] WANG Q, CHEN X, GONG X. Theoretical and experimental investigation on the characteristics of fly‐ash scrubbing in a fixed valve tray column [J]. AIChE Journal, 2013, 59(6): 2168-2178.
[14] GARCIA J A, FAIR J R. Distillation sieve trays without downcomers: prediction of performance characteristics [J]. Industrial & Engineering Chemistry Research, 2002, 41(6): 1632-1640.
[15] KRISHNA R, VAN BATEN J M. Modelling sieve tray hydraulics using computational fluid dynamics [J]. Chemical Engineering Research and Design, 2003, 81(1): 27-38.
[16] VAN BATEN J M, KRISHNA R. Modelling sieve tray hydraulics using computational fluid dynamics [J]. Chemical Engineering Journal, 2000, 77(3): 143-151.
[17] WANG Q, CHEN X, GONG X. The particle removing characteristics in a fixed valve tray column [J]. Industrial & Engineering Chemistry Research, 2013, 52(9): 3441-3452.
[18] LEE B K, MOHAN B R, BYEON S H, et al. Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter [J]. Journal of the Air & Waste Management Association, 2013, 63(5): 499-506.
[19] MEIKAP B C, BISWAS M N. Flyash removal efficiency in a modified multistage bubble column scrubber [J]. Separation and Purification Technology, 2004, 36(3): 177-190.
[20] MEIKAP B C, KUNDU G, BISWAS M N. Prediction of the interfacial area of contact in a variablearea multistage bubble column [J]. Industrial & Engineering Chemistry Research, 2001, 40(26): 6194-6200.
[21] COUGHLIN, ROBERT W. Recent advances in air pollution control [M]. American Institute of Chemical Engineers。 \[S.l.\]. \[s.n.\]. 1974.
[22] DW C. Theoretical comparison of efficiency and power for singlestage and multiplestage particulate scrubbing [J] Atmos Environ, 1967, 10 (11): 1001-1004.
[23] MOOJOUNG M, FARQUHAR G J. Waste treatment and utilization: theory and practice of waste management[M]. Aids, 2015, 29(9): 1119-1120.
[24] CHYLEK P, VIDEEN G, NGO D, et al. Effect of black carbon on the optical properties and climate forcing of sulfate aerosols [J]. Journal of Geophysical Research: Atmospheres, 1995, 1001(D8): 16325-16332.
[25] PARK S H, JUNG C H, JUNG K R, et al. Wet scrubbing of polydisperse aerosols by freely falling droplets [J]. Journal of Aerosol Science, 2005, 36(12): 1444-1458.
[26] KALDOR T G, PHILLIPS C R. Aerosol scrubbing by foam [J]. Industrial & Engineering Chemistry Process Design and Development, 1976, 15(1): 199-206.
[27] KIM H T, JUNG C H, OH S N, et al. Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction [J]. Environmental Engineering Science, 2001, 18(2): 125-136.
[1] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.
[2] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[3] 朱燕群, 杨业, 黄建鹏, 林法伟, 马强, 徐超群, 王智化, 岑可法. 橡胶厂60000 m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870.
[4] 邱珊, 陈聪, 邓凤霞, 冀雅婉, 丁晓, 马放. 石墨电极E Fenton法处理罗丹明B废水[J]. 浙江大学学报(工学版), 2016, 50(4): 704-713.
[5] 周斌,周昊,王建阳,岑可法. 神华煤灰掺混木屑灰在O2/CO2气氛下的烧结特性[J]. 浙江大学学报(工学版), 2016, 50(3): 468-476.
[6] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.
[7] 宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.
[8] 鲍强, 周昊, 刘建成, 朱国栋, 时伟, 岑可法.
新型CeO2-V2O5/TiO2-SiO2催化剂高效抗碱金属中毒性能
[J]. 浙江大学学报(工学版), 2015, 49(10): 1855-1862.
[9] 方梦祥, 江文敏, 王涛, 项群扬, 卢佳汇, 周旭萍. 基于实验的直接蒸气再生CO2系统模拟及优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1565-1571.
[10] 陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 2015, 49(3): 564-570.
[11] 姚水良,赵一帆,张媛,倪洁操,吴祖良. 多层介质阻挡放电处理柴油机尾气颗粒物[J]. 浙江大学学报(工学版), 2015, 49(1): 157-161.
[12] 陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 2014, 48(10): 0-1.
[13] 吴祖良, 谢德援, 陆豪, 姚水良, 高翔2. 介质阻挡放电废气中萘的降解特性和机理[J]. 浙江大学学报(工学版), 2014, 48(6): 1120-1126.
[14] 王磊,王重华,宁平,蒋明,覃扬颂. Ca(OH)2黏土混合物的固磷固硫作用[J]. J4, 2013, 47(5): 874-882.
[15] 汪明喜, 方梦祥, 汪桢, 潘一力, 骆仲泱. 相变吸收剂对CO2吸收与再生特性[J]. J4, 2013, 47(4): 662-668.