Please wait a minute...
浙江大学学报(工学版)
动力与能源工程     
玉米秸秆和聚丙烯共催化热解试验
宋祖威, 仲兆平, 张波, 吕子婷, 丁宽
东南大学 能源热转换及其过程测控教育部重点实验室 能源与环境学院,江苏 南京210096
Experimental study on catalytic co pyrolysis of corn stalk and polypropylene
SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
 全文: PDF(982 KB)   HTML
摘要:

采用管式炉试验装置研究温度对聚丙烯催化热解、不同聚丙烯与玉米秸秆质量比对热解产物和催化剂结焦的影响.结果表明:在聚丙烯单独催化热解温度为550 ℃时,热解油产率最大、残渣率为0,产物主要为烯烃和芳香烃.HZSM 5使得汽油馏分增加,产物轻质化,当温度为600 ℃时,汽油馏分(C6~C12)质量分数达到93%~39 %,不同温度下催化剂结焦率均小于1 %.聚丙烯和玉米秸秆共催化时存在协同作用,热解产物以质量比1∶1为分界点,质量比大于1∶1,具有烃类产物分布,当质量比小于1∶1时,热解产物为含氧有机物,催化剂结焦量与原料的有效氢碳比具有负相关关系.当共催化质量比为1∶1时,热解油有害组分仅6.49 %,烃类产率达71.7 %,催化剂结焦率为1.92 %. 

Abstract:
A horizontal tubular reactor was used to study the effects of temperature on polypropylene catalytic pyrolysis, of the mass ratio of corn stalk to polypropylene on product distribution and of coke deposited on catalyst. Results show that when the temperature of polypropylene catalytic pyrolysis is 550 ℃, the yield of pyrolysis oil reaches a maximum with no residue, and the products mainly consist of olefins and aromatic hydrocarbons. The addition of HZSM 5 increases the gasoline fractions (C6 C12) with the mass fraction of 93.39% at 600 ℃. Besides, the coke yield is less than 1% under all the temperature conditions. There is synergistic effect in the co pyrolysis process between corn stalk and polypropylene. Mass ratio of 1∶1 is the demarcating point in terms of different product distributions. Specifically, hydrocarbons domain the pyrolytic products when mass ratio is more that 1∶1, while oxygenated compounds are most abundant in pyrolytic products when mass ratio is tess than 1:1. Coke yield is negatively associated with H/C of the raw materials. The mass ratio of 1∶1 achieves a better result with the negative components content of 6.49%, the yield of hydrocarbons of 71.7% and the coke yield of 1.92%.
出版日期: 2016-02-01
:  X 511  
基金资助:

国家自然科学基金资助项目(51276040);国家“973”重点基础研究发展计划资助项目(2013CB228106).

通讯作者: 仲兆平,男,教授,博导.ORCID:0000 0002 9190 5432.     E-mail: zzhong@seu.edu.cn
作者简介: 宋祖威(1990—),男,硕士,从事生物质催化热解方面研究. ORCID:0000 0002 8224 4871. E-mail:songzuwei90@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.019.

SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan. Experimental study on catalytic co pyrolysis of corn stalk and polypropylene. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.019.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.019        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/333

[1] MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio oil: a critical review [J]. Energy & Fuels, 2006, 20(3): 848-889.
[2] FOSTER A J, JAE J, CHENG Y T, et al. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM 5 [J]. Applied Catalysis A: General, 2012, 423: 154-161.
[3] LU Q, ZHANG Y, T Z, et al. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts [J]. Fuel, 2010, 89(8):2096-2103.
[4] VICHAPHUND S, AHT ONG D, SRICHAROENCHAIKUL V, et al. Catalytic Upgrading of Jatropha Waste Fast pyrolysis vapors over synthesized HZSM 5 using analytical Py GC/MS [J]. Journal of Biobased Materials and Bioenergy, 2013, 7(2): 252-258.
[5] CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil [J]. Energy & Fuels, 2004, 18(2): 590-598.
[6] ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal modified ZSM 5 zeolite [J]. Applied Catalysis B: Environmental, 2012, 127: 281-290.
[7] WILLIAMS P T, HORNE P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils [J]. Journal of Analytical and Applied Pyrolysis, 1995, 31: 39-61.
[8] CARLSON T R, JAE J, LIN Y C, et al. Catalytic fast pyrolysis of glucose with HZSM 5: the combined homogeneous and heterogeneous reactions [J]. Journal of Catalysis, 2010, 270(1): 110-124.
[9] CARLSON T R, TOMPSETT G A, CONNER W C, et al. Aromatic production from catalytic fast pyrolysis of biomass derived feedstocks [J]. Topics in Catalysis, 2009, 52(3): 241-252.
[10] TAARNING E, OSMUNDSEN C M, YANG X, et al. Zeolite catalyzed biomass conversion to fuels and chemicals [J]. Energy & Environmental Science, 2011, 4(3): 793-804.
[11] VISPUTE T P, ZHANG H, SANNA A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils [J]. Science, 2010, 330(6008): 1222-1227.
[12] AHO A, KUMAR N, ERNEN K, et al. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure [J]. Fuel, 2008, 87(12): 2493-2501.
[13] HUANG J, LONG W, AGRAWAL P K, et al. Effects of acidity on the conversion of the model bio oil ketone cyclopentanone on HY zeolites [J]. The Journal of Physical Chemistry C, 2009, 113(38): 16702-16710.
[14] CARLSON T R, VISPUTE T P, HUBER G W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds [J]. ChemSusChem, 2008, 1(5): 397-400.
[15] CHEN N Y, DEGNAN T F, KOENIG L R. Liquid fuel from carbohydrates [J]. Chemtech, 1986, 16(8): 506-511.
[16] ZHANG H, CHENG Y T, VISPUTE T P, et al. Catalytic conversion of biomass derived feedstocks into olefins and aromatics with ZSM 5: the hydrogen to carbon effective ratio [J]. Energy & Environmental Science, 2011, 4(6): 2297-2307.
[17] ZHANG B, ZHONG Z P, DING K, et al. Production of aromatic hydrocarbons from catalytic co pyrolysis of biomass and high density polyethylene: Analytical Py–GC/MS study [J]. Fuel, 2015, 139: 622-628.
[18] 张会岩, 肖睿, Huber G W. 生物质和废弃油脂流化床共催化热解实验研究[J]. 工程热物理学报, 2013, 34(4): 771-774.
ZHANG Hui yan, XIAO Rui, HUBER G W. Experimental research on co catalytic pyrolysis of biomass and waste oil in a fluidized bed [J]. Journal of Engineering Thermophysics, 2013, 34(4): 771-774.
[19] 王健, 张守玉,郭熙,等.平朔煤和生物质共热解实验研究[J].燃料化学学报, 2013, 41(1): 67-73.
WANG Jian, ZHANG Shou yu, GUO Xi, et al. Co pyrolysis of Pingshuo coal and biomass [J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 67-73.
[20] 周利民,王一平,黄群武, 等.生物质/塑料共热解热重分析及动力学研究[J].太阳能学报, 2007, 28(9): 979-983.
ZHOU Li min, WANG Yi ping, HUANG Qun wu, et al. TG analysis and kinetics of biomass/plastic co pyrolysis [J]. ACTA Energlae Solaris Sinica, 2007, 28(9): 979-983.
[21] 王刚.生物质与聚乳酸塑料共热解特性研究[D].大连:大连理工大学, 2009: 54-64.
WANG Gang. Study on copyrolysis characteristics of biomass and polylactic acid plastic blends  [D]. Dalian: Dalian university of technology, 2009: 54-64.
[22] BOCKHORN H, HORNUNG A, HORNUNG U, et al. Kinetic study on the thermal degradation of polypropylene and polyethylene [J]. Journal of Analytical and Applied Pyrolysis, 1999, 48(2): 93-109.
[23] 吴何来. 生物质热解提质燃油内燃机燃烧及排放试验研究[D]. 杭州: 浙江大学, 2014: 45-54.
WU He lai. Experimental study upon combustion and emission properties of upgraded biomass pyrolysis oil on IC engines[D]. Hangzhou: Zhejiang University, 2014: 45-54.
[24] FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production [J]. Fuel Processing Technology, 2010, 91(1): 25-32.
[25] GAYUBO A G, AGUAYO A T, ATUTXA A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM 5 zeolite. I. Alcohols and phenols [J]. Industrial & Engineering Chemistry Research, 2004, 43(11): 2610-2618.
[26] LI X, LI J, ZHOU G, et al. Enhancing the production of renewable petrochemicals by co feeding of biomass with plastics in catalytic fast pyrolysis with ZSM 5 zeolites [J]. Applied Catalysis A: General, 2014, 481:173-182.

[1] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.
[2] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[3] 朱燕群, 杨业, 黄建鹏, 林法伟, 马强, 徐超群, 王智化, 岑可法. 橡胶厂60000 m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870.
[4] 张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法. 筛板塔细颗粒物协同脱除特性实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1516-1520.
[5] 邱珊, 陈聪, 邓凤霞, 冀雅婉, 丁晓, 马放. 石墨电极E Fenton法处理罗丹明B废水[J]. 浙江大学学报(工学版), 2016, 50(4): 704-713.
[6] 周斌,周昊,王建阳,岑可法. 神华煤灰掺混木屑灰在O2/CO2气氛下的烧结特性[J]. 浙江大学学报(工学版), 2016, 50(3): 468-476.
[7] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.
[8] 鲍强, 周昊, 刘建成, 朱国栋, 时伟, 岑可法.
新型CeO2-V2O5/TiO2-SiO2催化剂高效抗碱金属中毒性能
[J]. 浙江大学学报(工学版), 2015, 49(10): 1855-1862.
[9] 方梦祥, 江文敏, 王涛, 项群扬, 卢佳汇, 周旭萍. 基于实验的直接蒸气再生CO2系统模拟及优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1565-1571.
[10] 陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 2015, 49(3): 564-570.
[11] 姚水良,赵一帆,张媛,倪洁操,吴祖良. 多层介质阻挡放电处理柴油机尾气颗粒物[J]. 浙江大学学报(工学版), 2015, 49(1): 157-161.
[12] 陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 2014, 48(10): 0-1.
[13] 吴祖良, 谢德援, 陆豪, 姚水良, 高翔2. 介质阻挡放电废气中萘的降解特性和机理[J]. 浙江大学学报(工学版), 2014, 48(6): 1120-1126.
[14] 王磊,王重华,宁平,蒋明,覃扬颂. Ca(OH)2黏土混合物的固磷固硫作用[J]. J4, 2013, 47(5): 874-882.
[15] 汪明喜, 方梦祥, 汪桢, 潘一力, 骆仲泱. 相变吸收剂对CO2吸收与再生特性[J]. J4, 2013, 47(4): 662-668.