Please wait a minute...
浙江大学学报(工学版)
土木工程与水利工程     
黄土-碎石覆盖层毛细阻滞效应及设计厚度分析
焦卫国, 詹良通, 兰吉武,陈云敏
1.浙江大学,软弱土与环境土工教育部重点实验室, 浙江 杭州 310058
2.贵州理工学院,土木工程学院,贵州 贵阳 550003
Analysis of capillary barrier effect and design thickness with loess-gravel cover
JIAO Wei guo, ZHAN Liang tong, LAN Ji wu, CHEN Yun min
MOE Key of Laboratory of soft soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China. 
School of Civil Engineering, Guizhou Institute of Technology, Guiyang 550003, China
 全文: PDF(950 KB)   HTML
摘要:

为了研究我国西北地区以黄土和碎石构成的毛细阻滞覆盖层适用性,验证黄土-碎石间的毛细阻滞效应以及覆盖层初步设计厚度, 在西安江村沟垃圾填埋场开展黄土碎石毛细阻滞覆盖层极端降雨实验.实测黄土-碎石毛细阻滞覆盖层的储水能力,验证了黄土-碎石间的毛细阻滞作用,分析西安地区半湿润气候条件下毛细阻滞覆盖层的初步设计厚度.研究结果表明:在黄土层同为1.0 m厚的条件下,毛细阻滞型覆盖层与单一型覆盖层相比,总储水量提高了24.9%~31.8%,有效储水量提高了38.2%~48.9%.现场实测黄土-碎石毛细阻滞覆盖层储水量为116.92 mm,而按脱湿和吸湿曲线计算理论储水量分别为137.68和88.30 mm.与本次降雨实测的存储量相比,分别偏大17.76% 和偏小24.42%.对于黏性黄土分别下衬碎石、粗砂和中砂构建的毛细阻滞覆盖层:若采用黄土脱湿曲线计算初步设计厚度为1.06~1.12 m,而采用吸湿曲线初步设计厚度为1.22~1.28 m.在黄土毛细阻滞覆盖层厚度设计中,若采用脱湿曲线计算偏于危险,而采用吸湿曲线则偏于安全.

Abstract:

The capillary barrier effect of clayey loess-gravel cover was verified and  preliminary design thickness was analyzed in order to study the applicability of capillary barrier cover with loess and gravel in the northwest of China.   Extreme rainfall test was conducted on the loess-gravel capillary barrier cover at Xi' an, Jiang Chun landfill.  Water storage capacity of the cover was measured. The capillary barrier effect in clayey loess-gravel cover was illustrated and the thickness of loess capillary barrier cover was analyzed.  Compared with the monolithic cover with 1 m thick loess layer, the total water and effective water storage capacity for the capillary barrier cover with the same thickness of loss layer were increased by 24.9%~31.8% and 38.2%~48.9%, respectively. The maximum water storage in the loess-gravel capillary barrier cover was measured as 116.92 mm in the extreme rainfall test.  Compared with the field measurement, the theoretical value of water storage calculated by drying SWCC was 10.91% greater, and theoretical value of water storage calculated by wetting SWCC was 16.40% lower. When using the gravel, coarse sand and medium sand as a coarse soil and using the clayey loess as a fine soil to form a capillary barrier cover,the preliminary design thickness of the loess cover was between 1.06~1.12 meters calculated by drying SWCC, and it was 1.22~1.28 meters by wetting SWCC. In the preliminary design of cover, the thickness calculated by drying SWCC was conservative and it was non-conservative by wetting SWCC.

出版日期: 2016-11-01
:  TU 411  
基金资助:

国家“973”重点基金研究发展计划资助项目(2012CB719805).

通讯作者: 詹良通,男,教授,博导. ORCID: 0000-0002-4483-6737.     E-mail: zhanlt@zju.edu.cn
作者简介: 焦卫国(1983-),男,博士,从事非饱和土力学,环境岩土工程等研究. ORCID: 0000-0002-7078-5929. E-mail:805810460@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

焦卫国, 詹良通, 兰吉武,陈云敏. 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.11.013.

JIAO Wei guo, ZHAN Liang tong, LAN Ji wu, CHEN Yun min. Analysis of capillary barrier effect and design thickness with loess-gravel cover. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.11.013.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.11.013        http://www.zjujournals.com/eng/CN/Y2016/V50/I11/2128

[1] 贾官伟. 固废堆场终场土质覆盖层中水分运移规律及调控方法研究[D]. 杭州: 浙江大学, 2010.
JIA Guanwei, Study on the water transport in the landfill earthen final cover and its controlling method [D]. Hangzhou: Zhejiang University, 2010.
[2] 施建勇,钱学德,朱月兵.垃圾填埋场土工合成材料的界面特性试验方法研究[J]. 岩土工程学报, 2010, 32(5): 688-692.
SHI Jianyong, QIAN Xuede, ZHU Yuebing. Experiment methods for interface behavior of geosynthetics in landfills [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 688-692.
[3] 钱学德,郭志平,施建勇等现代卫生填埋场的设计与施工[M ],北京:中国建筑工业出版社,200.
[4] DWYER S F. 2003. Water balance measurements and computer simulations of landfill covers [D]. Thesis, The University of New Mexico, Albuquerque, New Mexico, USA.
[5] QIAN X D, KOERNER R M, GRAY D H. Geotechnical aspects of landfill design and construction [M]. New Jersey, America: Prentice-Hall, 2002.
[6] BENSON C H, ALBRIGHT W H, ROESLER A C, et al.Evaluation of final cover performance: Field data fromthe Alternative Cover Assessment Program (ACAP) [C]∥Proceedings of Waste Management. [S.l.]: [s.n.], 2002, 2:115.
[7] KHIRE M V, BENSON C H, BOSSCHER P J. Water balance modeling of earthen final covers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(8): 744-754.
[8] STORMONT J C. The effectiveness of two capillary barriers on a 10% slope  [J]. Geotechnical and Geological Engineering, 1996, 14(4): 243-267.
[9] BUSSIERE B, AUBERTIN M, CHAPUIS R P. The behavior of inclined covers used as oxygen barriers [J]Canadian Geotechnical Journal, 2003, 40(3): 512-535.
[10] YANG H, RAHARDJO H., LEONG, E C E, et al. A study of infiltration on three sand capillary barriers [J] Canadian Geotechnical Journal.,2011, 41(4): 629-643.
[11] 张文杰, 邱战洪, 朱成仁,等. 长三角地区填埋场 ET 封顶系统的性能评价[J]. 岩土工程学报, 2009, 31(3): 384-389.
ZHANG Wenjie, QIU Zhanhong, ZHOU Chengren, et al.Evaluation of evapotranspiration covers of landfills inYangtze River delta region [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 384-389.
[12] 冯世进, 李夕林, 高丽亚. 不同降雨模式条件下填埋场封顶系统最大饱和深度[J]. 岩土工程学报, 2012, 34(5):924-930.
FENG Shijin, LI Xilin, GAO Li ya. Maximum saturated depth over barrier in landfill cover system under various rainfall patterns [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 924-930.
[13] 詹良通, 贾官伟, 邓林恒. 湿润气候区固废堆场封场土质覆盖层性状研究[J]. 岩土工程学报, 2012,34(10): 1812-1818.
ZHAN Liangtong, JIA Guanwei, DENG Linheng, et al. Performance of earthen final covers of landfills in humid areas [J]. Chinese Journal of Geotechnical Engineering,2012, 34(10): 1812-1818.
[14] 邓林恒,詹良通,陈云敏,等. 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究[J]. 岩土工程学报,2012,34(1):75-80.
DENG Linheng, ZHAN Liangtong, CHEN Yunmin, et al. Model tests on capillarybarrier cover with unsaturated drainage layer [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 75-80.
[15] 詹良通,焦卫国,孔令刚,等.黄土作为西北地区填埋场土质覆盖层材料可行性及设计厚度分析[J].岩土力学, 2014, 12(3): 384-389.
ZHAN Liangtong, JIAO Weiguo,KONG Linggang, et al. Feasibility analysis of using loess as soil cover material for landfills in northwest of China [J]. Rock and Soil Mechanics, 2014, 12(3): 384-389.
[16] CHEN, C. Meteorological conditions for design of monolithic alternative earthen covers (AEFCs) [D]. MS Thesis, University of Wisconsin, Madison, Wisconsin, USA,1999.
[17] 徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J].岩石力学与工程学报,2007,26(7):12971316.
XU Zhangjian,LIN Zaiguan,ZHANG Maosheng. Loess in China and loess landslides [J].Chinese Journal of Rock Mechanics and Engineering,2007,26(7):12971316.
[18] TAMI D, RAHARDJO H, LEONG E C, et al. Design and laboratory verification of a physical model of sloping capillary barrier [J]. Geotechnical and Geological Engineering, 2011,41(5): 814830.
[19]RAHARDJO H, SANTOSO V A, LEONG E C, et al. Performance of an instrumented slope covered by a capillary barrier system [J]. Journal Of Geotechnical And Geoenvironmental Engineering, 2012. 138(4),481-490.
[20] FREDLUND D G,TAMI D, LEONG E C, et al. A physical model for sloping capillary barriers [J]. Geotechnical Testing Journal, 2004. 27( 2),173-183.
[21] GENUCHTEN M T V. A closedform equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America, 1980, 44(44): 892-898.
[22] BENSON C H. Final covers for waste containment systems a north american perspective[R].Madison, Wisconsin USA: University of Wisconsin Madison,1999.

[1] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[2] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[3] 张如如,赵云,徐文杰,黄博,凌道盛,韩黎明. 温度作用下机场跑道土基中水气运移规律分析[J]. 浙江大学学报(工学版), 2016, 50(5): 822-830.
[4] 曾兴, 詹良通, 钟孝乐, 陈云敏. 低渗透黏土中氯离子弥散作用离心模拟相似性[J]. 浙江大学学报(工学版), 2016, 50(2): 241-249.
[5] 郑健,李育超,陈云敏. 底泥固结对污染物运移影响的超重力离心试验模拟[J]. 浙江大学学报(工学版), 2016, 50(1): 8-15.
[6] 凌道盛,石吉森,张如如,王云岗. Hansbo类有限单元法的非连续分片试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2142-2150.
[7] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[8] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.
[9] 钟孝乐,詹良通,龚标,曾兴,陈云敏. 我国3种典型高岭土的固结、渗透及吸附特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1947-1954.
[10] 李新亮,李素贞,申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[11] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[12] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
[13] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[14] 李雪刚,徐日庆,畅帅,廖斌,王兴陈. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 2014, 48(5): 843-849.
[15] 刘长殿, 孙红月, 康剑伟, 杜丽丽. 土体的充气阻渗试验[J]. J4, 2014, 48(2): 236-241.