Please wait a minute...
J4  2012, Vol. 46 Issue (12): 2215-2223    DOI: 10.3785/j.issn.1008-973X.2012.12.012
土木工程     
基于极限拉应变法的盾构掘进注浆隆起
对上覆结构的影响
林存刚1, 张忠苗1, 吴世明2, 崔迎辉3
1. 浙江大学 岩土工程研究所,软弱土与环境土工教育部重点实验室,浙江 杭州 310058;
2. 杭州庆春路过江隧道有限公司,浙江 杭州 310002; 3.中国石油独山子石化公司营销调运处,新疆 独山子 833600
Influences of grouting heave on overlying structures in shield tunneling
LIN Cun-gang1, ZHANG Zhong-miao1, WU Shi-ming2, CUI Ying-hui3
1. Institute of Geotechnical Engineering, MOE Key Laboratory of Soft Soils and Geoenvironment Engineering,
Zhejiang University, Hangzhou, 310058, China;2. Hangzhou Qing-chun Road Cross-river Tunnel Company Limited,
Hangzhou,Zhejiang 310002, China; 3. PetroChina Dushanzi Petrochemical Company,Dushanzi 833600, China
 全文: PDF  HTML
摘要:

通过对杭州庆春路过江隧道盾构掘进地面位移的分析,发现横断面地面注浆隆起符合高斯分布;在Peck公式基础上考虑注浆隆起,提出广义Peck公式,可对盾构隧道施工引起的包含注浆隆起在内的横断面地面位移进行合理的预测与反分析.基于极限拉应变法,讨论了地层损失沉降和注浆隆起综合作用对上覆结构的影响.通过一算例分析,对盾构掘进最佳同步注浆量进行了探寻.算例表明:提高注浆建筑空隙填充率对减轻盾构掘进给结构造成的危害是最为关键的,额外注浆反而对结构不利.

Abstract:

Through analysis of in-situ monitored ground surface movements due to shield tunnelling in construction of Hangzhou Qingchun Road Cross-river Tunnel,it was found that the transversal ground surface heave induced by tail grouting follows the Gaussian curve pattern. Based on the traditional Peck equation, a generalized Peck equation that takes the grouting heave into account was proposed, which can predict and backanalyze the shield tunnelling-induced ground surface movements including grouting heave inside with great accuracy. Based on the limiting tensile strain method, the combined influences of ground loss and tail grouting on overlying structures were studied. In the case study, the optimum grouting volume was explored. The case study showed that the key to minimize tunnelling’s damage to overlying structures is to increase the factor of grouting , while additional grouting is harmful to the structures’ safety.

出版日期: 2012-12-01
:  TU 443  
基金资助:

国家自然科学基金资助项目(51078330);杭州庆春路过江隧道科研资助项目.

作者简介: 林存刚(1986—),男,博士生,主要从事软土地层盾构隧道施工环境影响及隧道长期稳定性、耐久性研究. E-mail:cunganglin@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林存刚, 张忠苗, 吴世明, 崔迎辉. 基于极限拉应变法的盾构掘进注浆隆起
对上覆结构的影响[J]. J4, 2012, 46(12): 2215-2223.

LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, CUI Ying-hui. Influences of grouting heave on overlying structures in shield tunneling. J4, 2012, 46(12): 2215-2223.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.12.012        http://www.zjujournals.com/eng/CN/Y2012/V46/I12/2215

[1] PECK R B. Deep excavations and tunneling in soft ground[C]∥State of the Art Report. Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City: [s.n.], 1969: 225-290.
[2] SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique,1987,37(3): 30-320.
[3] VERRUIJT A,BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic halfplane[J]. Géotechnique,1996,46(4): 753-756.
[4] LOGANATHAN N,POULOS H G. Analytical prediction for tunnelinginduced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9): 846-856.
[5] CHIS Y,CHERN J C,LIN C C. Optimized backanalysis for tunnelinginduced ground movement using equivalent ground loss model[J]. Tunnelling and Underground Space Technology,2001,16(3): 159-165.
[6] PARK K H. Analytical solution for tunnellinginduced ground movement in clays[J]. Tunnelling and Underground Space Technology,2005,20(3): 249-261.
[7] BOSCARDIN M D,CORDING E J. Building response to excavationinduced settlement[J].Journal of Geotechnical Engineering,1989,115(1): 1-21.
[8] POTTS D M,ADDENBROOKE T I. A structure’s influence on thunnellinginduced ground movements[J].Proceedings of the ICEGeotechnical Engineering,1997,125(2): 109-125.
[9] BURLAND J B, STANDING J R, JARDINE F M. Building response to tunneling: Case studies from construction of the Jubilee Line Extension, London[M]. London : Thomas Telford Publishing, Thomas Telford Ltd, 2001: 23-43.
[10] NETZEL H D. Building response due to ground movements[D]. Amsterdam, Netherlands: Delft University of Technology, 2009: 37-46.
[11] FRANZIUS J N. Behaviour of buildings due to tunnel induced subsidence[D]. London :Department of Civil and Environmental Engineering Imperial College of Science, Technology and Medicine,2003: 56-79.
[12] 吴世明,林存刚,张忠苗,等.泥水盾构下穿堤防的风险分析及控制研究[J].岩石力学与工程学报,2011,30(5): 1034-1042.
WU Shiming,LIN Cungang,ZHANG Zhongmiao,et al. Risk analysis and control for slurry shield underpassing embankment[J].Chinese Journal of Rock Mechanics and Engineering, 2011,30(5): 1034-1042.
[13] 尹旅超,朱振宏,李玉珍,等.日本隧道盾构新技术[M].武汉:华中理工大学出版社,1999: 46-101.
[14] SHIRLAW J N, RICHARDS D P, RAMOND P, et al. Recent experience in automatic tail void grouting with soft ground tunnel boring machines[C]∥ITAAITES World Tunnel Congress. Singapore:[s.n.], 2004.
[15] LEE K M, JI H W, SHEN C K, et al. Ground response to the construction of Shanghai Metro TunnelLine 2[J].Soils and Foundations,1999,39(3): 113-134.
[16] MELIS M, MEDINA L, RODRIGUEZ J M. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension[J]. Canadian Geotechnical Journal, 2002, 39(6): 1273-1287.
[17] MAYNAR M M, RODRIGUEZ L M. Predicted versus measured soil movements induced by shield tunnelling in the Madrid Metro extension[J]. Canadian Geotechnical Journal, 2005, 42(4): 1160-1172.
[18] 肖衡.大直径泥水盾构掘进对土体的扰动研究[D].北京:北京交通大学土木建筑工程学院,2009: 234. XIAO Heng. Study on soil disturbance caused by large diameter slurry shield tunnelling[D].Beijing: School of Civil Engineering, Beijing Jiaotong University,2009: 2-34.
[19] ROWE R K, LO K Y, KACK G J. A method of estimating surface settlement above tunnels constructed in soft ground[J].Canadian Geotechnical Journal,1983,20(8): 11-22.
[20] LEE K M, POWE R K, LO  K Y. Subsidence owing to tunnelling. I: Estimating the gap parameter[J]. Canadian Geotechnical Journal,1992,29(6): 929-940.
[21] BURLAND J B, WROTH C P. Settlements of buildings and associated damage, State of the art review[C]∥ Conference on Settlement of Structure. London: Pentech Press, 1974: 611-654.
[22] 张忠苗,林存刚,吴世明,等.过江盾构隧道穿越大堤的地层沉降分析及控制[J].岩土工程学报,2011,33(6): 977-984.
ZHANG Zhongmiao, LIN Cungang, WU Shiming,et al.Analysis and control of ground settlement of embankments in construction of crossriver shield tunnels[J] Chinese Journal of Geotechnical Engineering, 2011,33(6): 977-984.

[1] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117.
[2] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.
[3] 韩同春, 豆红强, 马世国, 王福建. 考虑雨水重分布对均质无限长边坡稳定性的研究[J]. J4, 2013, 47(10): 1824-1829.
[4] 吴永,裴向军,何思明,李新坡. 降雨型泥石流对沟床侵蚀的水力学机理[J]. J4, 2013, 47(9): 1585-1592.
[5] 陈卓,周建,温晓贵,陶燕丽. 电极反转对电渗加固效果的试验研究[J]. J4, 2013, 47(9): 1579-1584.
[6] 蔡袁强,刘新峰,郭林,孙宏磊,曹志刚. 飞机荷载作用下超载预压软土地基的长期沉降[J]. J4, 2013, 47(7): 1157-1163.
[7] 吴世明, 王湛, 王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. J4, 2013, 47(4): 595-601.
[8] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507.
[9] 徐长节,李碧青,蔡袁强. 自平衡法试桩的承载特性试验研究[J]. J4, 2012, 46(7): 1262-1268.
[10] 胡安峰,黄杰卿,谢新宇,吴健,李金柱,刘开富. 考虑自重影响的饱和土体一维复杂非线性固结研究[J]. J4, 2012, 46(3): 441-447.
[11] 韩同春,黄福明. 双层结构土质边坡降雨入渗过程及稳定性分析[J]. J4, 2012, 46(1): 39-45.
[12] 孙德安, 陈立文, 甄文战. 平面应变条件下水土耦合超固结黏土分叉分析[J]. J4, 2010, 44(10): 1938-1943.
[13] 李仁民, 刘松玉, 方磊, 杜延军. 采用随机生长四参数生成法构造黏土微观结构[J]. J4, 2010, 44(10): 1897-1901.