[1] RADELBAUGH R. A review of pulse tube refrigeration [J]. Advances in Cryogenic Engineering, 1990, 35(B): 1191-1205.
[2] BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine [J]. Nature, 1999, 339: 335-338.
[3] BACKHAUS S, SWIFT G W. A thermoacoustic-Stirling heat engine: detailed study [J]. Journal of the Acoustical Society of America, 2000, 107(6): 3148-3166.
[4] SUN Da-ming, QIU Li-min, ZHANG Wu, et al. Investigation on traveling wave thermoacoustic heat engine with high-pressure amplitude [J]. Energy Conversion and Management, 2005, 46(2): 281-291.
[5] QIU L M, SUN D M, TAN Y X, et al. Investigation on Gedeon streaming in a traveling wave thermoacoustic engine [C]∥ Cryogenic Engineering Conference and the International Cryogenic Materials Conference. Keystone: American Institute of Physics, 2005: 1115-1122.
[6] 罗二仓,凌红,戴巍,等. 采用锥形谐振管的高压比聚能型热声发动机[J]. 科学通报, 2005, 50(3): 605-607.
LUO Er-cang, LING Hong, DAI Wei, et al. An high pressure ratio energy-focus thermoacoustic engine using cone pipe [J]. Chinese Science Bulletin,2005, 50(3): 605-607.
[7] 罗二仓,胡剑英,戴巍,等. 一种大幅度提高热声发动机压比的“声学泵”[J]. 科学通报, 2005, 50(17): 1926-1928.
LUO Er-cang, HU Jian-ying, DAI Wei, et al. An acoustic amplifier capable of remarkably increasing pressure ratio of thermoacoustic engine [J]. Chinese Science Bulletin, 2005, 50(17): 1926-1928.
[8] SUN Da-ming, QIU Li-min, WANG Bo, et al. Novel Helmholtz resonator used to focus acoustic energy of thermoacoustic engine [J]. Applied Thermal Engineering, 2009, 29(5/6): 945-949.
[9] 王波,孙大明,邱利民,等. 可大幅提高热声发动机压比的二级声压放大器[J]. 浙江大学学报:工学版, 2008, 42(9): 1545-1548.
WANG Bo, SUN Da-ming, QIU Li-min, et al. Two-stage cascade acoustic amplifier capable of remarkably increasing pressure ratio of thermoacoustic engine [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(9): 1545-1548.
[10] HU J Y, LUO E C, DAI W. An innovative configuration for thermoacoustically-driven pulse tube coolers [J]. Cryogenics, 2005, 45(7): 523-527.
[11] 胡剑英,罗二仓,戴巍,等. 突破液氢温度的热驱动热声制冷机[J]. 科学通报, 2006, 51(23): 2823-2824.
HU Jian-ying, LUO Er-cang, DAI Wei, et al. A thermoacoustically driven cooler capable of reaching temperature of liquid hydrogen [J]. Chinese Science Bulletin, 2006, 51(23): 2823-2824.
[12] GARDNER D L, SWIFT G W. Use of inertance in orifice pulse tube refrigerators [J]. Cryogenics, 1997, 37(2): 117-121.
[13] DAI Wei, HU Jian-ying, LUO Er-cang. Comparison of two different ways of using inertance tube in a pulse tube cooler [J]. Cryogenics, 2006, 46(4): 273-277.
[14] SCHUNK L O, NELLIS G F. Experimental investigation and modeling of inertance tubes [J]. Journal of Fluids Engineering, 2005, 127(5): 1029-1037.
[15] 罗志昌. 流体网络理论[M]. 北京:机械工业出版社, 1988.
[16] WARD W C, SWIFT G W. Design environment for low-amplitude thermoacoustic engines [J]. Journal of the Acoustical Society of America, 1994, 95(6): 3671-3672.
[17] 邱利民,孙大明,张武. 大型多功能热声发动机的研制及初步实验. 第一部分:热声发动机的研制[J]. 低温工程, 2003(2): 1-7.
QIU Li-min, SUN Da-ming, ZHANG Wu, et al. Study of a large-scale multi-function thermoacoustic heat engine with high efficiency. Part I: Design and construction of the engine [J]. Cryogenic Engineering, 2003(2): 1-7.
[18] 孙大明,邱利民,陈萍,等. 变负载法研究热声发动机的声功输出特性[J]. 浙江大学学报:工学版, 2006, 40(6): 966-970.
SUN Da-ming, QIU Li-min, CHEN Ping, et al. Investigation on output characteristics of thermoacoustic engine by variable-load method [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(6): 966-970.
[19] ZHOU Shu-liang, MATSUBARA Y. Experimental research of thermoacoustic primemover [J]. Cryogenics, 1998, 38(8): 813-822. |