Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1812-1818    DOI: 10.3785/j.issn.1008-973X.2020.09.018
机械与能源工程     
氨对二次有机气溶胶光学特性的影响
王军明1(),赵兴亚2,陈玲红2,*(),韩黎霞2,高翔2,岑可法2
1. 中国石化齐鲁分公司热电厂,山东 淄博 255410
2. 浙江大学 热能工程研究所,浙江 杭州 310027
Ammonia effect on optical properties of secondary organic aerosols
Jun-ming WANG1(),Xing-ya ZHAO2,Ling-hong CHEN2,*(),Li-xia HAN2,Xiang GAO2,Ke-fa CEN2
1. Thermal Power Plant of Sinopec Qilu Branch, Zibo 255410, China
2. Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(955 KB)   HTML
摘要:

开展一系列甲苯/NOx光氧化烟雾箱模拟实验,研究大气环境中氨对二次有机气溶胶(SOA)光学特性的影响. 采用特氟龙膜作为烟雾箱的反应腔材料,实验过程中同时检测颗粒的粒径分布、光学参数和质谱信息. 讨论不同氨体积分数对甲苯光氧化生成SOA的消光截面、复折射率及粒径等参数的变化特征. 研究发现,上述实验中SOA的消光作用均以散射为主;随着粒径的增大,消光截面呈指数增大,复折射率则先增大后减小. 与低湿无氨环境相比,增湿或加氨均导致SOA中元素O和C物质的量之比增大、复折射率增大;高湿加氨条件下,SOA的粒径明显减小、颗粒数密度急剧增大、SOA中元素O和C的物质的量之比、元素N和C的物质的量之比均增大.

关键词: 甲苯二次有机气溶胶(SOA)湿度复折射率    
Abstract:

A series of toluene/NOx photo-oxidation experiments were carried out in a smog chamber, and the effect of ammonia on the optical properties of secondary organic aerosols (SOA) evolved by toluene was investigated. The chamber was made of Teflon. The distribution of SOA particle size, extinction efficiency, and mass spectrometric patterns were measured simultaneously during the experimental process. The variation of SOA parameters was discussed, including extinction section, refractive index, and particle size by changing ammonia volume fraction. Results show that the extinction of SOA was dominated by scattering. With the increase of particle size, the extinction cross section exponentially increases, the refractive index firstly increases and then decreases. Compared with low humidity ammonia free environment, the increase of molar ratios of O to C and refractive index of SOA was found either increasing humidity or with ammonia. Under high humidity with ammonia, there is obvious decrease of particle size, sharp increase of number density of particles, and increase both molar ratios of O to C and N to C.

Key words: toluene    secondary organic aerosols (SOA)    ammonia    humidity    refractive index
收稿日期: 2019-11-15 出版日期: 2020-09-22
CLC:  X 511  
基金资助: 国家自然科学基金资助项目(51876190);国家重点研发计划资助项目(2018YFB0605200)
通讯作者: 陈玲红     E-mail: wangjm.qlsh@sinopec.com;chenlh@zju.edu.cn
作者简介: 王军明(1974—),男,硕士,从事燃煤污染控制研究. orcid.org/0000-0001-8972-8695. E-mail: wangjm.qlsh@sinopec.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王军明
赵兴亚
陈玲红
韩黎霞
高翔
岑可法

引用本文:

王军明,赵兴亚,陈玲红,韩黎霞,高翔,岑可法. 氨对二次有机气溶胶光学特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1812-1818.

Jun-ming WANG,Xing-ya ZHAO,Ling-hong CHEN,Li-xia HAN,Xiang GAO,Ke-fa CEN. Ammonia effect on optical properties of secondary organic aerosols. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1812-1818.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.018        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1812

实验序号 φNH3/10?9 φC7H8/10?9 φNO/10?9 φNO2/10?9 RH/%
ZJU235 0 120.6 62 1.3 ~7
ZJU239 0 146.8 63 1.4 ~7
ZJU243 50 147.3 62 1.9 ~7
ZJU246 50 154 62 2.6 ~7
ZJU249 0 158.2 57 1.1 68
ZJU252 50 184 58 2.1 63
ZJU254 50 ? 63 1.4 65
表 1  甲苯/NOx光氧化实验初始设定值
图 1  实验过程中SOA平均粒径与颗粒数密度的时域图
图 2  实验过程中SOA消光系数与散射系数的关系
图 3  实验过程中SOA的消光效率与粒径的关系
图 4  不同实验条件下SOA的复折射率与粒径的关系
图 5  SOA有机碎片离子组分占比与质荷比的关系
图 6  SOA的复折射率分别与其中元素O和C的物质的量之比、N和C的物质的量之比的关系
1 JOYCE E P, DONG X Q, CHEN Y Observational evidence of a change in radiative forcing due to the indirect aerosol effect[J]. Nature, 2004, 427 (6971): 231- 234
doi: 10.1038/nature02234
2 CHAND D, WOOD R, ANDERSON T L, et al Satellite-derived direct radiative effect of aerosols dependent on cloud cover[J]. Nature Geoscience, 2009, 2 (3): 181- 184
doi: 10.1038/ngeo437
3 HARVEY R M, BATEMAN A P, JAIN S, LI Y J, et al Optical properties of secondary organic aerosol from cis-3-hexenol and cis-3-hexenyl acetate: effect of chemical composition, humidity, and phase[J]. Environmental Science and Technology, 2016, 50 (10): 4997- 5006
doi: 10.1021/acs.est.6b00625
4 LI K W, CHEN L H, WHITE S J, et al Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou [J]. Environmental Pollution, 2018, 232: 42- 54
doi: 10.1016/j.envpol.2017.09.016
5 ZHAO J, QIU Y M, ZHOU W, et al Organic aerosol processing during winter severe haze episodes in Beijing[J]. Journal of Geophysical Research: Atmospheres, 2019, 124 (17/18): 10248- 10263
doi: 10.1029/2019JD030832
6 WANG Y C, WANG Q Y, YE J H, et al A review of aerosol chemical composition and sources in representative regions of China during wintertime[J]. Atmosphere, 2019, 10 (5): 277- 292
doi: 10.3390/atmos10050277
7 NAKAYAMA T, MATSUMI Y, SATO K, et al Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene [J]. Journal of Geophysical Research, 2010, 115 (D24): 11
8 DENJEAN C, FORMENTI P, PICQUET-VARRAULT B, et al Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene [J]. Atmospheric Chemistry and Physics, 2015, 15 (6): 3339- 3358
doi: 10.5194/acp-15-3339-2015
9 LI K, WANG W G, GE M F, et al Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons[J]. Scientific Reports, 2014, 4 (1): 4922- 4931
10 REDMOND H, THOMPSON J E Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA)[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13 (15): 6872- 3882
doi: 10.1039/c0cp02270e
11 NAKAYAMA T, SATO K, MATSUMI Y, IMAMURA T, et al Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene [J]. Atmospheric Chemistry and Physics, 2013, 13 (2): 531- 545
doi: 10.5194/acp-13-531-2013
12 LI J L, LI K, WANG W G, WANG J, et al Optical properties of secondary organic aerosols derived from long-chain alkanes under various NOx and seed conditions [J]. Science of the Total Environment, 2017, 579: 1699- 1705
doi: 10.1016/j.scitotenv.2016.11.189
13 JIA L, XU Y F Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene[J]. Aerosol Science and Technology, 2014, 48 (1): 1- 12
doi: 10.1080/02786826.2013.847269
14 LI K, LI J L, LIGGIO J, WANG W Q, et al Enhanced light-scattering of secondary organic aerosols by multiphase reactions[J]. Environmental Science and Technology, 2017, 51 (3): 1285- 1292
doi: 10.1021/acs.est.6b03229
15 NA K, SONG C, COCKER D R Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water[J]. Atmospheric Environment, 2006, 40 (10): 1889- 1900
doi: 10.1016/j.atmosenv.2005.10.063
16 NAKAYAMA T, SATO K, TSUGE M, et al Complex refractive index of secondary organic aerosol generated from isoprene/NOx photooxidation in the presence and absence of SO2[J]. Journal of Geophysical Research: Atmospheres, 2015, 120 (15): 7777- 7787
doi: 10.1002/2015JD023522
17 FU X, WANG S X, XING J, et al Increasing ammonia concentrations reduce the effectiveness of particle pollution control achieved via SO2 and NOx emissions reduction in east China [J]. Environmental Science and Technology Letters, 2017, 4 (6): 221- 227
doi: 10.1021/acs.estlett.7b00143
18 MOISE T, FLORES J M, RUDICH Y Optical properties of secondary organic aerosols and their changes by chemical processes[J]. Chemical Reviews, 2015, 115 (10): 4400- 4439
doi: 10.1021/cr5005259
19 LI K W, CHEN L H, HAN K, et al Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: changes of mass, size, effective density, morphology and mixing state [J]. Atmospheric Research, 2017, 184: 139- 148
doi: 10.1016/j.atmosres.2016.10.011
20 CHEN L H, LV B, ZHENG X J, et al Effect of relative humidity on non-refractory submicron aerosol evolution during summertime in Hangzhou, China[J]. Journal of Zhejiang University-SCIENCE A, 2018, 19 (1): 45- 59
doi: 10.1631/jzus.A1700567
21 PETZOLD A, ONASCH T, KEBABIAN P, et al Intercomparison study of the CAPS PMex (cavity attenuated phase shift particle light extinction monitor) with the combination of an integrating nephelometer and a particle soot absorption photometer [J]. Atmospheric Measurement Techniques, 2012, 5 (5): 7587- 7618
doi: 10.5194/amtd-5-7587-2012
22 徐俊, 黄明强, 冯状状, 等 氨与甲苯SOA形成含氮有机物的影响因素研究[J]. 中国环境科学, 2019, 39 (2): 533- 541
XU Jun, HUANG Ming-qiang, FENG Zhuang-zhuang, et al Study on the factors affecting the formation of nitrogen-containing organic compounds formed from ammonia and toluene secondary organic aerosol[J]. China Environmental Science, 2019, 39 (2): 533- 541
doi: 10.3969/j.issn.1000-6923.2019.02.011
23 LIU S J, TSONA N T, ZHANG Q, et al Influence of relative humidity on cyclohexene SOA formation from OH photooxidation[J]. Chemosphere, 2019, 231: 478- 486
doi: 10.1016/j.chemosphere.2019.05.131
24 HEALY R M, TEMIME B, KUPROVSKYTE K, et al Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene[J]. Environmental Science and Technology, 2009, 43 (6): 1884- 1889
doi: 10.1021/es802404z
25 HINKS M L, MONTOYA-AGUILERA J, ELLISON L, et al Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene[J]. Atmospheric Chemistry and Physics, 2018, 18 (3): 1643- 1652
doi: 10.5194/acp-18-1643-2018
26 DOCHERTY K S, CORSE E W, JAOUI M, et al Trends in the oxidation and relative volatility of chamber-generated secondary organic aerosol[J]. Aerosol Science and Technology, 2018, 52 (9): 992- 1004
doi: 10.1080/02786826.2018.1500014
27 JIA L, XU Y F Different roles of water in secondary organic aerosol formation from toluene and isoprene[J]. Atmospheric Chemistry and Physics, 2018, 18 (11): 8137- 8154
doi: 10.5194/acp-18-8137-2018
28 LIU T Y, HUANG D D, LI Z J, et al Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity[J]. Atmospheric Chemistry and Physics, 2018, 18 (8): 5677- 5689
doi: 10.5194/acp-18-5677-2018
29 DUPLISSY J, DECARLO P F, DOMMEN J, et al Relating hygroscopicity and composition of organic aerosol particulate matter[J]. Atmospheric Chemistry and Physics, 2011, 11 (3): 1155- 1165
doi: 10.5194/acp-11-1155-2011
30 NG N L, CANAGARATNA M R, ZHANG Q, et al Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry[J]. Atmospheric Chemistry and Physics, 2010, 10 (10): 4625- 4641
doi: 10.5194/acp-10-4625-2010
31 ALFARRA M R, PAULSEN D, GYSRL M, et al A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber[J]. Atmospheric Chemistry and Physics, 2006, 6 (12): 5279- 5293
doi: 10.5194/acp-6-5279-2006
32 NGUYEN T B, ROACH P J, LASKIN J, et al Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol[J]. Atmospheric Chemistry and Physics, 2011, 11 (14): 6931- 6944
doi: 10.5194/acp-11-6931-2011
[1] 金松涛,刘畅,王丽颖,杨扬. 严寒地区被动房外墙传热系数[J]. 浙江大学学报(工学版), 2019, 53(10): 1966-1976.
[2] 任松, 欧阳汛, 吴建勋, 陈钒, 王亮, 陈结. 含时间效应的硬石膏隧道弹-膨胀解析模型[J]. 浙江大学学报(工学版), 2018, 52(5): 896-905.
[3] 刘楠, 滕富华, 陆建海, 董事壁, 顾震宇. 光催化-吸收法处理家具涂装废气中试试验[J]. 浙江大学学报(工学版), 2017, 51(2): 393-398.
[4] 罗龙皂, 邵瑜, 田光明. 基于微藻培养的养猪废水氨氮吹脱预处理[J]. 浙江大学学报(工学版), 2017, 51(10): 2055-2060.
[5] 韩中合,白亚开,王继选. 冷冻氨脱碳机组流程仿真及其耦合方式优化[J]. 浙江大学学报(工学版), 2016, 50(3): 499-507.
[6] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.
[7] 易思阳,金虹庆,范利武,徐旭,俞自涛,葛坚. 多孔建筑材料水蒸气扩散系数的瞬态测试方法[J]. 浙江大学学报(工学版), 2016, 50(1): 16-20.
[8] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.
[9] 秦亚男, 杨玉, 时伟, 马炜晨, 周昊, 岑可法. SNCR-SCR耦合脱硝中还原剂均布性的研究[J]. 浙江大学学报(工学版), 2015, 49(7): 1255-1261.
[10] 邵振华, 魏博伦, 叶志平, 何奕, 施耀. 等离子体联合光催化治理喷漆废气[J]. 浙江大学学报(工学版), 2014, 48(6): 1127-1131.
[11] 李亚界,吴绵斌,林建平,杨立荣. 5-氨基乙酰丙酸对小球藻生长及油脂积累的影响[J]. J4, 2014, 48(3): 535-540.
[12] 丁晶,舒欣,赵庆良. 电化学氧化法处理氨氮废水的影响因素[J]. J4, 2013, 47(5): 889-894.
[13] 邓华, 黄莉, 王宸. 聚氨酯夹芯屋面板的风致动力性能分析[J]. J4, 2013, 47(12): 2125-2131.
[14] 黄镇宇, 孙勇, 陈丰, 杨卫娟, 陈镇超, 周俊虎, 岑可法. 125 MW电站煤粉锅炉SNCR试验研究[J]. J4, 2012, 46(10): 1778-1783.
[15] 罗振寰,张庆华,詹晓力,陈丰秋. 聚硅氧烷嵌段/接枝改性聚氨酯的表面性能[J]. J4, 2011, 45(3): 566-570.