Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1819-1826    DOI: 10.3785/j.issn.1008-973X.2020.09.019
航空航天技术     
惯性元件再平衡回路噪声整形机理研究
吴宾(),黄添添*(),叶凌云,宋开臣
浙江大学 生物医学工程与仪器科学学院,浙江 杭州 310027
Noise shaping mechanism of rebalancing loop for inertial component
Bin WU(),Tian-tian HUANG*(),Ling-yun YE,Kai-chen SONG
College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1341 KB)   HTML
摘要:

推导出检测噪声传递函数和驱动噪声传递函数,并分析检测噪声传递函数幅频曲线转折频率、直流增益、单位增益频率和高频增益. 结果表明,检测噪声传递函数具有低频衰减、高频放大的特征. 以石英挠性加速度计为例,分析摆性、检测结构增益、检测电路增益和转动弹性系数对检测噪声传递函数的影响. 结果表明,增大摆性、检测结构增益以及检测电路增益可以在全频段减小检测噪声传递函数的幅值,减小转动弹性系数可以在低频段减小检测噪声传递函数的幅值. 仿真分析结果验证了石英挠性加速度计检测噪声传递函数和驱动噪声传递函数的频谱特征,验证了摆性、检测结构增益、检测电路增益和转动弹性系数对检测噪声传递函数的作用机理,说明通过优化噪声传递函数可以减少惯性传感器的噪声.

关键词: 惯性元件噪声整形频谱特征摆性检测结构增益检测电路增益转动弹性系数    
Abstract:

The detection noise transfer function and driving noise transfer function were derived, and the turning frequency of amplitude frequency curve, DC gain, unit gain frequency, and high-frequency gain of detection noise transfer function were analyzed. Results show that the detection noise transfer function has the characteristics of low frequency attenuation and high frequency amplification. Taking the quartz flexure accelerometer as an example, the influence of pendulosity, detecting structure gain, detecting circuit gain, and rotational elastic coefficient on detecting noise transfer function were analyzed. Results show that the increase of pendulosity, detecting structure gain, and detecting circuit gain leads to the decrease of amplitude of detecting noise transfer function in all frequency bands; and the decrease of rotation stiffness makes the amplitude of detecting noise transfer function decrease in the low-frequency band. The simulation and analysis results has verified the spectrum characteristics of the detection noise transfer function and the driving noise transfer function of the quartz flexible accelerometer, as well as the mechanism of swing, detection structure gain, detection circuit gain, and the rotational elastic coefficient on the detection noise transfer function, indicating that the noise of the inertial sensor can be reduced by optimizing the noise transfer function.

Key words: inertial component    noise shaping    spectrum characteristics    pendulosity    detecting structure gain    detecting circuit gain    rotational elastic coefficient
收稿日期: 2019-10-31 出版日期: 2020-09-22
CLC:  V 441  
通讯作者: 黄添添     E-mail: 3090102920@zju.edu.cn;tthuang@zju.edu.cn
作者简介: 吴宾(1990—),男,博士生,从事加速度传感器研究. orcid.org/0000-0001-9401-219X. E-mail: 3090102920@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴宾
黄添添
叶凌云
宋开臣

引用本文:

吴宾,黄添添,叶凌云,宋开臣. 惯性元件再平衡回路噪声整形机理研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1819-1826.

Bin WU,Tian-tian HUANG,Ling-yun YE,Kai-chen SONG. Noise shaping mechanism of rebalancing loop for inertial component. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1819-1826.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.019        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1819

图 1  惯性元件再平衡回路系统框图
图 2  闭环、摆片检测以及检测噪声传递函数幅频曲线
图 3  闭环、摆片检测以及驱动噪声传递函数幅频曲线
图 4  检测噪声引起的加速度噪声幅值谱密度
图 5  驱动噪声引起的加速度噪声幅值谱密度
图 6  摆性加倍对检测噪声传递函数的影响
实验条件 ${K_{\text{θ} }^{\rm C} }$/( ${\rm{pF\cdot rad} }^{-1}$ ${K_{\rm C}^{\rm V} }$/( ${\rm{V\cdot pF} } ^{-1}$ $\sigma $/μg
原始参数 5 400 1.6 893.3
增大检测结构增益 10 800 1.6 446.8
增大检测电路增益 5 400 3.2 446.8
表 1  3种检测增益的加速度噪声
图 7  弹性减半对检测噪声传递函数的影响
1 徐玉, 李平, 韩波 微型无人直升机姿态测量系统设计与实现[J]. 浙江大学学报: 工学版, 2009, 43 (1): 172- 176
XU Yu, LI Ping, HAN Bo Design and implementation of attitude determination system for mini autonomous helicopter[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (1): 172- 176
2 胡淼淼, 敬忠良, 董鹏, 等 基于T分布变分贝叶斯滤波的SINS/GPS组合导航[J]. 浙江大学学报: 工学版, 2018, 52 (8): 1482- 1488
HU Miao-Miao, JING Zhong-liang, DONG Peng, et al Variational Bayesian filtering based on Student-t distribution for SINS/GPS integrated navigation[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 1482- 1488
3 严恭敏, 苏幸君, 翁浚, 等 基于惯导和无时延滤波器的舰船升沉测量[J]. 导航定位学报, 2016, 4 (2): 91- 107
YAN Gong-min, SUN Xing-jun, WENG Jun, et al Measurements of ship’s heave motion based on INS and zero-phase-delay digital filter[J]. Journal of Navigation and Position, 2016, 4 (2): 91- 107
4 张连超, 范大鹏, 范世珣 动力调谐陀螺再平衡回路技术的发展与研究现状[J]. 导弹与航天运载技术, 2008, (1): 36- 40
ZHANG Lian-chao, FAN Da-peng, FAN Shi-xun Development and current states of rebalance loop technology for dynamically tuned gyro[J]. Missile and Space Vehicles, 2008, (1): 36- 40
doi: 10.3969/j.issn.1004-7182.2008.01.008
5 周晓奇, 王昊, 金仲和, 等 数字式MEMS加速度计噪声分析和参数优化[J]. 浙江大学学报: 工学版, 2009, 43 (7): 1256- 1259
ZHOU Xiao-qi, WANG Hao, JIN Zhong-he, et al Noise analysis and parameter optimization of digital MEMS accelerometer system[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (7): 1256- 1259
6 李启雷, 金文光, 耿卫东 基于无线惯性传感器的人体动作捕获方法[J]. 浙江大学学报: 工学版, 2012, 46 (2): 280- 285
LI Qi-lei, JIN Wen-guang, GENG Wei-dong Human motion capture using wireless inertial sensors[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (2): 280- 285
7 朱海燕. 石英挠性加速度计离散化闭环控制策略研究[D]. 杭州: 浙江大学, 2015.
ZHU Hai-yan. Research on the digital closed-loop control algorithm of quartz flexible accelerometer [D]. Hangzhou: Zhejiang University, 2015.
8 李安, 张云电 石英挠性加速度计摆片组件的应力分析[J]. 机电工程, 2010, 27 (10): 1- 4
LI An, ZHANG Yun-dian Stress analysis of quartz flexible accelerometer's chip components[J]. Journal of Mechanical and Electrical Engineering, 2010, 27 (10): 1- 4
doi: 10.3969/j.issn.1001-4551.2010.10.002
9 WU B, YE L Y, HUANG T T, et al The Dead time characterization method of quartz flexure accelerometers using monotonicity number[J]. Sensors, 2019, 19 (14): 3123
doi: 10.3390/s19143123
10 刚煜, 王永建, 赵鹏, 等 石英挠性加速度计表头力矩器噪声模型研究[J]. 传感器与微系统, 2018, 37 (3): 34- 37
GANG Yu, Wang Yong-jian, ZHAO peng, et al Study of noise model for torquer in quartz flexible accelerometer header[J]. Transducer and Microsystem Technologies, 2018, 37 (3): 34- 37
11 高雅彪, 毛伟玲, 李醒飞 石英挠性摆式加速度计闭环检测电路设计[J]. 电子技术应用, 2012, 38 (2): 70- 72
GAO Ya-biao, MAO Wei-ling, LI Xing-fei A closed-loop detection circuit for quartz flexure accelerometer[J]. Measurement Control Technology and Instruments, 2012, 38 (2): 70- 72
doi: 10.3969/j.issn.0258-7998.2012.02.025
12 WANG C, LI X, KOU K, et al High resolution quartz flexure accelerometer based on laser self-mixing interferometry[J]. Review of Scientific Instruments, 2015, 86 (6): 065001
doi: 10.1063/1.4921903
13 陈静. 隧道式微加速度计信号处理电路的研究[D]. 太原: 中北大学, 2008.
CHEN Jing. Research on signal processing circuit of micromachined tunneling accelerometer [D]. Taiyuan: North University of China, 2008.
14 TIAN W, WU S, ZHOU Z, et al High resolution space quartz-flexure accelerometer based on capacitive sensing and electrostatic control technology[J]. Review of Scientific Instruments, 2012, 83 (9): 095002
doi: 10.1063/1.4749845
15 高雅彪. 石英挠性加速度计模拟伺服回路设计[D]. 天津: 天津大学, 2012.
GAO Ya-biao. Design of analog servo loop for quartz flexure accelerometer [D]. Tianjin: Tianjin University, 2012.
16 刘燕锋, 刘吉利, 马官营 静电力平衡式石英挠性加速度计闭环控制系统的设计与分析[J]. 空间控制技术与应用, 2019, 45 (2): 67- 78
LIU Yan-feng, LIU Ji-li, MA Guan-ying Design and analysis of closed-loop control system of electrostatic force-balance quartz-flexure accelerometer[J]. Aerospace Control and Application, 2019, 45 (2): 67- 78
doi: 10.3969/j.issn.1674-1579.2019.02.009
17 赵静. 再平衡回路模型分析与噪声消除[D]. 天津: 天津大学, 2013.
ZHAO Jing. Rebalance loop model analysis and noise elimination [D]. Tianjin: Tianjin University, 2013.
18 严恭敏. 惯性仪器测试与数据分析[M]. 北京: 国防工业出版社, 2012.
19 张声艳, 刘冬, 冯忠伟, 等 石英挠性加速度计数字闭环检测电路噪声研究[J]. 微型机与应用, 2016, 35 (21): 26- 29
ZHANG Sheng-yan, LIU Dong, Feng Zhong-wei, et al Noise Analysis for the digital closed-loop detection circuit of quartz-flex accelerometer[J]. Microcomputer and Its Applications, 2016, 35 (21): 26- 29
20 ZHANG S, XI Z, LI D. Accuracy analysis of digital closed-loop quartz flex accelerometer based on differential capacitance detection technology [C] // International Conference on Computational and Information Sciences. Shiyang: IEEE, 2013: 191–194.
21 顾英 石英挠性加速度计伺服电路[J]. 飞航导弹, 1985, (S1): 10- 17
GU Ying Servo circuit of quartz flexible accelerometer[J]. Cruise missile, 1985, (S1): 10- 17
22 连德浩. 石英挠性加速度计摆片微运动仿真与状态分析研究[D]. 绵阳: 西南科技大学, 2017.
LIAN De-hao. Study on the micro motion simulation and state analysis of quartz flexure accelerometer [D]. Mianyang: Southwest University of Science and Technology, 2017.
23 黄昱. 差分电容检测中分布电容的影响分析与电路优化[D]. 长沙: 长沙理工大学, 2018.
HUANG Yu. Analysis and circuit optimization of distributed capacitance in differential capacitance measurement [D]. Changsha: Changsha University of Science and Technology, 2018.
24 LOTTERS J C, OLTHUIS W, VELTINK P H, et al A sensitive differential capacitance to voltage converter for sensor applications[J]. IEEE transactions on instrumentation and measurement, 1999, 48 (1): 89- 96
doi: 10.1109/19.755066
25 毛伟玲. 基于模型辨识的石英挠性加速度计控制回路设计[D]. 天津: 天津大学, 2012.
MAO Wei-ling. Design of control loop for quartz flexure accelerometer based on model identification [D]. Tianjin: Tianjin University, 2012.
26 WU B, HUANG T, ZHU H, et al. Study of dynamic modeling method for quartz flexible accelerometer [C] // 2015 12th IEEE International Conference on Electronic Measurement and Instruments (ICEMI). IEEE, 2015, 3: 1477–1480.
27 姜宏蕾. 高精度全数字式超低频石英挠性加速度计研制[D]. 哈尔滨: 哈尔滨工业大学, 2016.
JIANG Hong-lei. Development of high precision digital ultra-low frequency quartz flexible accelerometer [D]. Harbin: Harbin Institute of Technology, 2016.
28 张春熹, 魏渊, 张晞, 等 数字闭环加速度计系统模型分析与校正设计[J]. 仪器仪表学报, 2012, 33 (12): 2833- 2839
ZHANG Chun-xi, WEI Yuan, ZHANG Xi, el al Model analysis and emendation design of digital close-loop accelerometer system[J]. Chinese Journal of Scientific Instrument, 2012, 33 (12): 2833- 2839
doi: 10.3969/j.issn.0254-3087.2012.12.029
29 LI L, ZHANG C, ZHANG X, et al. Investigation on noise of digital close-loop Q-Flex accelerometer [C] // 2011 6th IEEE Conference on Industrial Electronics and Applications. Beijing: IEEE, 2011: 614–619.
[1] 梅优良 刘鹏 周建 陈科明. 基于RISC的MPEG-4音频解码软件优化[J]. J4, 2007, 41(4): 603-606.