浙江大学学报(工学版), 2020, 54(9): 1812-1818 doi: 10.3785/j.issn.1008-973X.2020.09.018

机械与能源工程

氨对二次有机气溶胶光学特性的影响

王军明,, 赵兴亚, 陈玲红,, 韩黎霞, 高翔, 岑可法

Ammonia effect on optical properties of secondary organic aerosols

WANG Jun-ming,, ZHAO Xing-ya, CHEN Ling-hong,, HAN Li-xia, GAO Xiang, CEN Ke-fa

通讯作者: 陈玲红,女,教授. orcid.org/0000-0002-8171-4632. E-mail: chenlh@zju.edu.cn

收稿日期: 2019-11-15  

Received: 2019-11-15  

作者简介 About authors

王军明(1974—),男,硕士,从事燃煤污染控制研究.orcid.org/0000-0001-8972-8695.E-mail:wangjm.qlsh@sinopec.com , E-mail:wangjm.qlsh@sinopec.com

摘要

开展一系列甲苯/NOx光氧化烟雾箱模拟实验,研究大气环境中氨对二次有机气溶胶(SOA)光学特性的影响. 采用特氟龙膜作为烟雾箱的反应腔材料,实验过程中同时检测颗粒的粒径分布、光学参数和质谱信息. 讨论不同氨体积分数对甲苯光氧化生成SOA的消光截面、复折射率及粒径等参数的变化特征. 研究发现,上述实验中SOA的消光作用均以散射为主;随着粒径的增大,消光截面呈指数增大,复折射率则先增大后减小. 与低湿无氨环境相比,增湿或加氨均导致SOA中元素O和C物质的量之比增大、复折射率增大;高湿加氨条件下,SOA的粒径明显减小、颗粒数密度急剧增大、SOA中元素O和C的物质的量之比、元素N和C的物质的量之比均增大.

关键词: 甲苯 ; 二次有机气溶胶(SOA) ; ; 湿度 ; 复折射率

Abstract

A series of toluene/NOx photo-oxidation experiments were carried out in a smog chamber, and the effect of ammonia on the optical properties of secondary organic aerosols (SOA) evolved by toluene was investigated. The chamber was made of Teflon. The distribution of SOA particle size, extinction efficiency, and mass spectrometric patterns were measured simultaneously during the experimental process. The variation of SOA parameters was discussed, including extinction section, refractive index, and particle size by changing ammonia volume fraction. Results show that the extinction of SOA was dominated by scattering. With the increase of particle size, the extinction cross section exponentially increases, the refractive index firstly increases and then decreases. Compared with low humidity ammonia free environment, the increase of molar ratios of O to C and refractive index of SOA was found either increasing humidity or with ammonia. Under high humidity with ammonia, there is obvious decrease of particle size, sharp increase of number density of particles, and increase both molar ratios of O to C and N to C.

Keywords: toluene ; secondary organic aerosols (SOA) ; ammonia ; humidity ; refractive index

PDF (955KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王军明, 赵兴亚, 陈玲红, 韩黎霞, 高翔, 岑可法. 氨对二次有机气溶胶光学特性的影响. 浙江大学学报(工学版)[J], 2020, 54(9): 1812-1818 doi:10.3785/j.issn.1008-973X.2020.09.018

WANG Jun-ming, ZHAO Xing-ya, CHEN Ling-hong, HAN Li-xia, GAO Xiang, CEN Ke-fa. Ammonia effect on optical properties of secondary organic aerosols. Journal of Zhejiang University(Engineering Science)[J], 2020, 54(9): 1812-1818 doi:10.3785/j.issn.1008-973X.2020.09.018

大气气溶胶可直接通过对光的吸收和散射影响全球的辐射平衡[1-2],这一过程与大气气溶胶的光学特性有关. 气溶胶的光学特性主要受气溶胶的组分、粒径、形态等因素的影响[3]. 二次有机气溶胶(secondary organic aerosol,SOA)是大气气溶胶的重要组成成分,研究发现,在北京、杭州和广州等城市大气环境PM1中SOA占38%~66%[4-6]. 值得指出的是,目前对SOA在复合污染情景下的物化特性以及形成机制仍不甚清楚,这已成为目前国内外的研究热点.

根据光学理论,通常根据颗粒粒径和复折射率表征吸收、散射以及消光等光学特性. 复折射率主要由实部和虚部组成,分别代表颗粒物对光的散射作用和吸收作用. 目前有许多学者对SOA的复折射率进行了研究. Nakayama等[7-11]研究了甲苯光氧化SOA和α-蒎烯光氧化SOA的光学特性,发现复折射率值分别为1.431~1.498和1.43~1.60. Li等[12]研究了十二烷、十五烷和十七烷光氧化生成SOA的光学特性,发现SOA光学特性与其反应生成路径有关.

大气中的湿度对SOA组分、光学特性的影响不容忽视. Jia等[13]通过研究苯和乙苯在不同相对湿度条件下光解生成SOA的过程,发现SOA中O-H、C-O和C-OH的官能团信号强度随着相对湿度的增加而增加,SOA主要为羧酸和乙二醛水合物. Li等[14]研究了相对湿度大于80%时邻二甲苯SOA复折射率的变化情况,发现增加相对湿度,邻二甲苯SOA的复折射率明显增加,这是由于液相反应导致乙二醛、甲基乙二醛等的聚合物大量快速生成,这些聚合物具有很强的消光作用.

Na等[15-16]研究发现,大气环境中存在的诸多气体组分可以通过参与有机物的光氧化反应从而影响其产物SOA的光学性质. 研究发现,在异戊二烯/NOx光氧化体系中加入SO2后SOA复折射率的实部值显著增大;复折射率的虚部值随着SO2体积分数的增加而增大,并与黑碳对光的吸收作用相当[16].

近年来,我国NOx、SO2等污染物排放量已有大幅度下降,但由于大气中氨的体积分数逐年上升,通过减少NOx和SO2排放以减少PM2.5的效果不显著,大气光学厚度也没有明显降低[17]. 需要指出的是,关于氨对SOA光学特性的影响的研究较少,尤其是不同环境湿度下氨对SOA的影响尚不清楚[18].

本文以大气挥发性有机物(VOCs)典型成分甲苯为例,研究甲苯光氧化生成SOA的反应过程中氨对SOA光学特性的影响,重点研究不同湿度环境中氨对甲苯氧化生成的SOA的粒径、颗粒数密度、组分和复折射率的影响.

1. 实验部分

1.1. 烟雾箱实验装置

甲苯的光氧化实验在CAPS-ZJU烟雾箱[19]中进行. 烟雾箱反应腔由高透光性的特氟龙膜材料制成,容积为2.88 m3,长×宽×高为2.0 m×1.2 m×1.2 m. 反应腔体放置在一个由木板制成的外罩中,外罩内部两侧安装有黑光灯(GE F40BLB),用于提供紫外光照. 实验过程中黑光灯的光照强度用NO2的光解速率常数进行表征,J=0.38 min−1. 外罩放置在一个由空调控温的房间中,实验开始前腔体内温度为20 °C左右,黑光灯打开后反应腔体温度逐渐上升,2 h后稳定在37 °C左右. 实验用甲苯、NO、NO2和氨等标准气体体积分数均为1×10−4,平衡气均为N2,储存在钢瓶中. 将零空气通入盛装超纯水的容器,采用鼓泡加湿的方式控制反应腔内的相对湿度.

烟雾箱反应腔内的背景空气来自一套零空气发生装置(Acadco 737 series,USA). 反应过程中采用气体分析仪(Thermo 42i和49i,Thermo Scientific,USA)分别在线测量NOx和O3的体积分数;甲苯体积分数由一套预浓缩仪(Entech. 7100A)耦合气相色谱-质谱联用仪(GC-MS: Agilent model 7890B GC and Agilent model 5977A mass selective detector,USA)测得. 采用扫描电迁移率粒径谱仪(SPMS,由CPC 3776和DMA 3080组成,TSI,USA)测量反应过程中的颗粒物粒径和颗粒数密度. 采用高分辨率飞行时间气溶胶质谱(HR-TOF-AMS,Aerodyne Research Incorporated,USA)测量SOA的化学组分,具体测量设置和数据分析详见文献[4]和[20]. 采用腔衰减相移式单散射反照率监测仪(CAPS-ALB,Shoreline Science Research)检测实验过程中甲苯SOA的消光系数,检测波长为530 nm,该仪器的详细信息及性能详见文献[21].

每次实验开始前使用零空气冲洗反应腔体(≥12 h),确保反应腔内颗粒数密度小于10个/cm3、O3与NOx的体积分数均低于1×10−9. 将标准气体通入烟雾箱反应腔后通入零空气,流速约为60 L/min,持续通气时间为3~5 s,上述过程反复操作5~8次,以脉冲气流的方式将通入的气体混匀,静置约1 h后打开黑光灯进行光氧化实验.

1.2. 复折射率计算方法

对于单分散的球形颗粒物,其消光系数可用下式进行计算:

${\alpha _{{\rm{ext}}}}=C{\sigma _{{\rm{ext}}}}=\frac{{\text{π}}}{4}C{D^2}{Q_{{\rm{ext}}}}.$

式中:C为颗粒数密度,σext为消光截面积,D为颗粒直径,Qext为消光效率.

对于具有一定粒径分布的多分散系颗粒,颗粒总表面积StotCDsm2,其中,Dsm为平均粒径,则多分散系颗粒的消光系数可表示为

${\alpha _{{\rm{ext}}}}=\frac{1}{4}S{}_{{\rm{tot}}}{Q_{{\rm{ext}}}}=\frac{{{\text{π}}}}{4}CD_{{\rm{sm}}}^2{Q_{{\rm{ext}}}}.$

实验过程中,αext为腔衰减相移式单散射反照率监测仪检测数据,利用扫描电迁移率粒径谱仪测得各个粒径段的CDsm. 由式(2)可得不同Dsm对应的Qext. 采用最小二乘法确定复折射率:

$\hat b = \frac{1}{N}\sum\limits_{i = 1}^N {\left( {{Q_{{\rm{ext}}}}\left( i \right) - Q_{{\rm{ext}}}^{'}(i)} \right)_{}^2} .$

式中:N为计算过程中选取的粒径段数,Qexti)为第i个粒径段的消光效率测量值,Q'extti)为根据Mie理论计算不同折射率的消光效率.

2. 实验结果与分析

对8组甲苯/NOx光氧化烟雾箱实验进行分析研究,各实验工况下通入的气体组分以及相对湿度等参数的初始值如表1所示,其中,φNH3φC7H8φNOφNO2分别为氨、甲苯、NO、NO2的体积分数,RH为相对湿度. 从表1可知,实验主要分为4类大气模拟环境条件:1)低湿无氨(ZJU235、ZJU239);2)低湿通氨(ZJU243、ZJU246);3)高湿无氨(ZJU249);4)高湿通氨(ZJU252、ZJU254).

表 1   甲苯/NOx光氧化实验初始设定值

Tab.1  Initial values of parameters during toluene/NOx photo-oxidation experiments

实验序号 φNH3/10−9 φC7H8/10−9 φNO/10−9 φNO2/10−9 RH/%
ZJU235 0 120.6 62 1.3 ~7
ZJU239 0 146.8 63 1.4 ~7
ZJU243 50 147.3 62 1.9 ~7
ZJU246 50 154 62 2.6 ~7
ZJU249 0 158.2 57 1.1 68
ZJU252 50 184 58 2.1 63
ZJU254 50 63 1.4 65

新窗口打开| 下载CSV


2.1. 粒径与颗粒数密度

分别选取上述4类的大气模拟环境条件下测量甲苯光氧化反应实验过程中SOA的粒径和颗粒数密度,如图1所示,其中t为反应持续时间,黑光灯打开时刻为t=0. 由图可知,实验过程中SOA粒径逐渐增大,大约经5 h后粒径值趋于稳定. 与低湿无氨的条件相比,低湿通氨时SOA粒径明显减小,颗粒数密度增加;高湿无氨条件下,SOA粒径减小,颗粒数密度明显增加,SOA形成所需时间变短;在高湿有氨条件下,SOA粒径最小,颗粒数密度最高.

图 1

图 1   实验过程中SOA平均粒径与颗粒数密度的时域图

Fig.1   Temporal profile of surface mean diameter and number concentration of secondary organic aerosol(SOA)during experimental process


上述通氨对SOA粒径与颗粒数密度的影响与文献[22]得到的研究结果一致,这是由于氨与甲苯光氧化产物中的有机酸反应,随后进入颗粒相,导致颗粒数密度迅速增加. 这一现象在高湿条件下更为明显,高湿环境抑制了低聚物的形成,同时促进了含羧酸官能团物质的形成,有利于氨与有机酸的反应[23]. 烟雾箱腔体内的温度在打开黑光灯光照2 h后稳定在37 °C左右,通入氨后,腔体内易生成硝酸铵等纳米级颗粒.

图1(b)中可以看出,提高反应体系的相对湿度,可以使SOA的形成速率更快,开启紫外灯进行实验时,湿度越高,反应腔内的OH自由基体积分数越大[24]. 通入氨或提高相对湿度后,颗粒数密度先增加,达到最大值之后逐渐减小. 另外,当湿度增加时,反应腔壁面随着腔内湿度的增加对颗粒的吸附作用增强,颗粒越小,吸附作用越强[25].

2.2. 不同反应体系中SOA的光学特性

图2所示为甲苯/NOx光氧化系列实验中测得的消光系数与散射系数. 可以看出,实验过程中的消光系数值与散射系数值相关性接近于1.0,SOA的消光作用均以散射为主.

图 2

图 2   实验过程中SOA消光系数与散射系数的关系

Fig.2   Relationship between efficiencies of extinction and scattering during experimental process


由Mie理论计算可知,粒径小于100 nm的颗粒物消光效率Qext值接近于0,为此,本文主要研究表面平均粒径大于100 nm的微粒. 如图3所示为上述4类实验过程中SOA的消光效率与粒径的关系,根据式(3)计算上述4类大气环境模拟条件甲苯氧化反应实验工况下的复折射率Ri,可以看出,在低湿无氨条件下,甲苯/NOx光氧化体系中SOA的复折射率为1.560,这与文献[7]、[10]的结果一致. 当保持该反应体系的相对湿度不变而仅通入氨时,SOA的复折射率略增大;当提高相对湿度但不通入氨时,SOA的复折射率增大至1.611;当提高相对湿度并通入氨时,SOA的复折射率为1.582. 随着光氧化反应的进行,SOA的组分发生变化:氧、碳元素物质的量之比(RO-C)逐渐增大,氮、碳元素物质的量之比(RN-C)逐渐减小,这些组分的变化可能影响SOA的复折射率[26].

图 3

图 3   实验过程中SOA的消光效率与粒径的关系

Fig.3   Relationship between extinction efficiency of SOA and particle diameter during experimental process


为了更准确地描述实验过程中SOA复折射率随时间的变化,对每一个数据点求其对应的复折射率,如图4所示. 不同实验体系下SOA复折射率的变化趋势有所不同:在低湿无氨条件下,SOA的复折射率随着粒径的增加基本保持不变;在低湿通氨条件下,SOA的复折射率随着粒径的增大而减小;当高湿无氨或高湿通氨时,随着的粒径增大,SOA的复折射率则呈增大的趋势.

图 4

图 4   不同实验条件下SOA的复折射率与粒径的关系

Fig.4   Relationship of refractive index of SOA and mean diameter under different experimental conditions


据文献[12]、[27]、[28]的研究可知,甲苯/NOx光氧化产物的分子量随着湿度的增加而减小,这是由于,一方面,反应环境中的水分抑制了低聚物的生成;另一方面,水分促进甲苯光氧化生成含羧酸、醛酮类物质(如:丙酮酸、乙醇酸、乙醛酸、甲酸、乙二酸、丙二酸等SOA成分),消光作用不断增强. 此外,在甲苯氧化过程中,上述含羧酸、醛酮类成分可能与氨发生反应,导致SOA组分发生变化,从而改变SOA的光学性质.

2.3. SOA组分比与复折射率的关系

图5所示为上述4类甲苯/NOx光氧化反应体系中SOA的质谱分析图. 图中,f为有机组分离子碎片信号强度占SOA离子碎片总信号强度的比例. 从图中可以看出,不同反应体系下SOA的质谱信号出峰位置基本相似,信号强度最高的有机碎片主要集中在离子质荷比值m/z=28,29,43,44处. 其中,m/z=28和44对应的有机碎片主要为CO+和CO2+,含羧基官能团的物质在气溶胶质谱仪(AMS)中电离时主要产生这2种离子碎片[29]m/z=29对应的有机碎片主要为CHO+,含羰基官能团的物质在AMS中电离时主要产生这种碎片[30]m/z=43对应的有机碎片主要来自酮类和醛类物质[31]. 由此可见,甲苯的光氧化产物SOA主要组分为有机酸、酮和醛,在高温通氨条件下,SOA的组分发生变化,导致其消光特性随之发生改变.

图 5

图 5   SOA有机碎片离子组分占比与质荷比的关系

Fig.5   Relationship between proportion of ions in organic debris of SOA and ratio of mass to charge


不同实验条件下SOA的复折射率Ri随元素物质的量之比(RO-CRN-C)的变化趋势如图6所示. 从图中可知,与低湿无氨的环境条件相比,低湿通氨时SOA中元素O和C物质的量之比(RO-C)、元素N和C物质的量之比(RN-C)、复折射率(Ri)等值均增大;与高湿无氨条件相比,高湿通氨时RO-C值变化不大,RN-C值则显著增大,Ri值减小,这说明在甲苯/NOx光氧化体系中通入氨或提高相对湿度均促进SOA的老化,引起SOA组分变化,从而改变SOA的光学特性. 此外,氨参与SOA生成反应,导致SOA中的RN-C值增大,在不同湿度条件下SOA的生成途径发生变化,导致SOA的组分存在差别.

图 6

图 6   SOA的复折射率分别与其中元素O和C的物质的量之比、N和C的物质的量之比的关系

Fig.6   Relationship of refractive index of organic aerosol and its molar ratios of O to C and N to C


Nguyen等[32-33]研究发现,当湿度较低时,甲苯/NOx光氧化易形成大量低聚物,这些低聚物主要由含羧基、醛基官能团的小分子物质经过缩合反应形成,且很难与氨发生反应. 随着湿度增大,缩合反应受到抑制,甲苯/NOx光氧化易形成更多含羧基、醛基等官能团的小分子物质,这些小分子物质易与氨快速反应形成有机铵盐和咪唑类物质[22, 25, 32]. 今后有必要进一步研究甲苯光氧化产物在氨作用或高湿条件影响下所形成产物的具体分子式和结构.

3. 结 论

(1)在甲苯/NOx光氧化体系中通入氨或增加湿度均导致SOA的平均粒径减小、颗粒数密度增加. 此外,SOA生成所需时间随着湿度的增加而减小.

(2)与低湿无氨的环境条件相比,在低湿加氨以及高湿无氨条件下,甲苯/NOx光氧化体系中新生成的SOA的复折射率值均有所增大.

(3)甲苯/NOx光氧化反应过程中SOA的主要成分为有机酸、酮和醛,这些成分具有很强的消光作用. 通入氨或提高相对湿度后,SOA的平均粒径减小、颗粒数密度增加、颗粒物中元素O和C物质的量之比、复折射率增大. 在通氨的高湿环境中,SOA的复折射率变化不大,但SOA的粒径明显减小、颗粒数密度急剧增大、元素O和C物质的量之比以及元素N和C物质的量之比均增大.

参考文献

JOYCE E P, DONG X Q, CHEN Y

Observational evidence of a change in radiative forcing due to the indirect aerosol effect

[J]. Nature, 2004, 427 (6971): 231- 234

DOI:10.1038/nature02234      [本文引用: 1]

CHAND D, WOOD R, ANDERSON T L, et al

Satellite-derived direct radiative effect of aerosols dependent on cloud cover

[J]. Nature Geoscience, 2009, 2 (3): 181- 184

DOI:10.1038/ngeo437      [本文引用: 1]

HARVEY R M, BATEMAN A P, JAIN S, LI Y J, et al

Optical properties of secondary organic aerosol from cis-3-hexenol and cis-3-hexenyl acetate: effect of chemical composition, humidity, and phase

[J]. Environmental Science and Technology, 2016, 50 (10): 4997- 5006

DOI:10.1021/acs.est.6b00625      [本文引用: 1]

LI K W, CHEN L H, WHITE S J, et al

Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou

[J]. Environmental Pollution, 2018, 232: 42- 54

DOI:10.1016/j.envpol.2017.09.016      [本文引用: 2]

ZHAO J, QIU Y M, ZHOU W, et al

Organic aerosol processing during winter severe haze episodes in Beijing

[J]. Journal of Geophysical Research: Atmospheres, 2019, 124 (17/18): 10248- 10263

DOI:10.1029/2019JD030832     

WANG Y C, WANG Q Y, YE J H, et al

A review of aerosol chemical composition and sources in representative regions of China during wintertime

[J]. Atmosphere, 2019, 10 (5): 277- 292

DOI:10.3390/atmos10050277      [本文引用: 1]

NAKAYAMA T, MATSUMI Y, SATO K, et al

Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene

[J]. Journal of Geophysical Research, 2010, 115 (D24): 11

[本文引用: 2]

DENJEAN C, FORMENTI P, PICQUET-VARRAULT B, et al

Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene

[J]. Atmospheric Chemistry and Physics, 2015, 15 (6): 3339- 3358

DOI:10.5194/acp-15-3339-2015     

LI K, WANG W G, GE M F, et al

Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons

[J]. Scientific Reports, 2014, 4 (1): 4922- 4931

REDMOND H, THOMPSON J E

Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA)

[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13 (15): 6872- 3882

DOI:10.1039/c0cp02270e      [本文引用: 1]

NAKAYAMA T, SATO K, MATSUMI Y, IMAMURA T, et al

Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene

[J]. Atmospheric Chemistry and Physics, 2013, 13 (2): 531- 545

DOI:10.5194/acp-13-531-2013      [本文引用: 1]

LI J L, LI K, WANG W G, WANG J, et al

Optical properties of secondary organic aerosols derived from long-chain alkanes under various NOx and seed conditions

[J]. Science of the Total Environment, 2017, 579: 1699- 1705

DOI:10.1016/j.scitotenv.2016.11.189      [本文引用: 2]

JIA L, XU Y F

Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene

[J]. Aerosol Science and Technology, 2014, 48 (1): 1- 12

DOI:10.1080/02786826.2013.847269      [本文引用: 1]

LI K, LI J L, LIGGIO J, WANG W Q, et al

Enhanced light-scattering of secondary organic aerosols by multiphase reactions

[J]. Environmental Science and Technology, 2017, 51 (3): 1285- 1292

DOI:10.1021/acs.est.6b03229      [本文引用: 1]

NA K, SONG C, COCKER D R

Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water

[J]. Atmospheric Environment, 2006, 40 (10): 1889- 1900

DOI:10.1016/j.atmosenv.2005.10.063      [本文引用: 1]

NAKAYAMA T, SATO K, TSUGE M, et al

Complex refractive index of secondary organic aerosol generated from isoprene/NOx photooxidation in the presence and absence of SO2

[J]. Journal of Geophysical Research: Atmospheres, 2015, 120 (15): 7777- 7787

DOI:10.1002/2015JD023522      [本文引用: 2]

FU X, WANG S X, XING J, et al

Increasing ammonia concentrations reduce the effectiveness of particle pollution control achieved via SO2 and NOx emissions reduction in east China

[J]. Environmental Science and Technology Letters, 2017, 4 (6): 221- 227

DOI:10.1021/acs.estlett.7b00143      [本文引用: 1]

MOISE T, FLORES J M, RUDICH Y

Optical properties of secondary organic aerosols and their changes by chemical processes

[J]. Chemical Reviews, 2015, 115 (10): 4400- 4439

DOI:10.1021/cr5005259      [本文引用: 1]

LI K W, CHEN L H, HAN K, et al

Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: changes of mass, size, effective density, morphology and mixing state

[J]. Atmospheric Research, 2017, 184: 139- 148

DOI:10.1016/j.atmosres.2016.10.011      [本文引用: 1]

CHEN L H, LV B, ZHENG X J, et al

Effect of relative humidity on non-refractory submicron aerosol evolution during summertime in Hangzhou, China

[J]. Journal of Zhejiang University-SCIENCE A, 2018, 19 (1): 45- 59

DOI:10.1631/jzus.A1700567      [本文引用: 1]

PETZOLD A, ONASCH T, KEBABIAN P, et al

Intercomparison study of the CAPS PMex (cavity attenuated phase shift particle light extinction monitor) with the combination of an integrating nephelometer and a particle soot absorption photometer

[J]. Atmospheric Measurement Techniques, 2012, 5 (5): 7587- 7618

DOI:10.5194/amtd-5-7587-2012      [本文引用: 1]

徐俊, 黄明强, 冯状状, 等

氨与甲苯SOA形成含氮有机物的影响因素研究

[J]. 中国环境科学, 2019, 39 (2): 533- 541

DOI:10.3969/j.issn.1000-6923.2019.02.011      [本文引用: 2]

XU Jun, HUANG Ming-qiang, FENG Zhuang-zhuang, et al

Study on the factors affecting the formation of nitrogen-containing organic compounds formed from ammonia and toluene secondary organic aerosol

[J]. China Environmental Science, 2019, 39 (2): 533- 541

DOI:10.3969/j.issn.1000-6923.2019.02.011      [本文引用: 2]

LIU S J, TSONA N T, ZHANG Q, et al

Influence of relative humidity on cyclohexene SOA formation from OH photooxidation

[J]. Chemosphere, 2019, 231: 478- 486

DOI:10.1016/j.chemosphere.2019.05.131      [本文引用: 1]

HEALY R M, TEMIME B, KUPROVSKYTE K, et al

Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene

[J]. Environmental Science and Technology, 2009, 43 (6): 1884- 1889

DOI:10.1021/es802404z      [本文引用: 1]

HINKS M L, MONTOYA-AGUILERA J, ELLISON L, et al

Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene

[J]. Atmospheric Chemistry and Physics, 2018, 18 (3): 1643- 1652

DOI:10.5194/acp-18-1643-2018      [本文引用: 2]

DOCHERTY K S, CORSE E W, JAOUI M, et al

Trends in the oxidation and relative volatility of chamber-generated secondary organic aerosol

[J]. Aerosol Science and Technology, 2018, 52 (9): 992- 1004

DOI:10.1080/02786826.2018.1500014      [本文引用: 1]

JIA L, XU Y F

Different roles of water in secondary organic aerosol formation from toluene and isoprene

[J]. Atmospheric Chemistry and Physics, 2018, 18 (11): 8137- 8154

DOI:10.5194/acp-18-8137-2018      [本文引用: 1]

LIU T Y, HUANG D D, LI Z J, et al

Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

[J]. Atmospheric Chemistry and Physics, 2018, 18 (8): 5677- 5689

DOI:10.5194/acp-18-5677-2018      [本文引用: 1]

DUPLISSY J, DECARLO P F, DOMMEN J, et al

Relating hygroscopicity and composition of organic aerosol particulate matter

[J]. Atmospheric Chemistry and Physics, 2011, 11 (3): 1155- 1165

DOI:10.5194/acp-11-1155-2011      [本文引用: 1]

NG N L, CANAGARATNA M R, ZHANG Q, et al

Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry

[J]. Atmospheric Chemistry and Physics, 2010, 10 (10): 4625- 4641

DOI:10.5194/acp-10-4625-2010      [本文引用: 1]

ALFARRA M R, PAULSEN D, GYSRL M, et al

A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber

[J]. Atmospheric Chemistry and Physics, 2006, 6 (12): 5279- 5293

DOI:10.5194/acp-6-5279-2006      [本文引用: 1]

NGUYEN T B, ROACH P J, LASKIN J, et al

Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol

[J]. Atmospheric Chemistry and Physics, 2011, 11 (14): 6931- 6944

DOI:10.5194/acp-11-6931-2011      [本文引用: 2]

WANG Y, LIU P, LI Y J, et al

The reactivity of toluene-derived secondary organic material with ammonia and the influence of water vapor

[J]. The Journal of Physical Chemistry A, 2018, 122 (38): 7739- 7747

DOI:10.1021/acs.jpca.8b06685      [本文引用: 1]

/