Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (1): 11-20    DOI: 10.3785/j.issn.1008-9209.2020.05.291
Reviews     
Research status and progress in structure and function of protein phosphatase 2C in plants
Yunrui CHEN(),Zhijun MAO,Zhaowei LI,Kai FAN()
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Download: HTML   HTML (   PDF(1325KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Protein phosphatase is one of the two key enzymes in the process of protein reversible phosphorylation. Protein phosphatase 2Cs (PP2Cs) are the important members of protein phosphatases. They are attributed to serine/threonine protein phosphatases (STPs) and can regulate the life activities of eukaryotic cells. PP2C members play an important role in hormone signal transduction pathways, especially abscisic acid (ABA) signal pathways; they can respond to various biotic and abiotic stresses, and also regulate organ development and seed germination. Recently, more and more PP2C members are found in plants. The regulation mechanisms of the PP2C members are diverse in different plants, different growth environments, and different physiological activities. The related research is an important topic. This review mainly introduces the structural characteristics, and subcellular localization of PP2C family in plants, and the research progresses in plant growth and development, hormone signal transductions, and stress responses, as well as in aspects of improving plant biological yield and promoting fruit development.



Key wordsprotein phosphatase 2C      plant growth and development      hormone signal transduction      stress response     
Received: 29 May 2020      Published: 09 March 2021
CLC:  Q  
Corresponding Authors: Kai FAN     E-mail: chenyunrui2018@163.com;fankai@fafu.edu.cn
Cite this article:

Yunrui CHEN,Zhijun MAO,Zhaowei LI,Kai FAN. Research status and progress in structure and function of protein phosphatase 2C in plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 11-20.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.05.291     OR     http://www.zjujournals.com/agr/Y2021/V47/I1/11


植物蛋白磷酸酶2C结构和功能的研究现状与进展

蛋白磷酸酶是蛋白质可逆磷酸化过程中2个关键酶之一,蛋白磷酸酶2C(protein phosphatase 2C, PP2C)是蛋白磷酸酶的重要成员。PP2C是一类丝氨酸/苏氨酸蛋白磷酸酶,可以调控真核生物细胞生命活动。PP2C成员主要参与激素信号转导途径,尤其可作为脱落酸信号途径的关键调节因子,能响应各种生物和非生物胁迫,在器官发育和种子萌发等方面也具有重要的促进作用。在不同的植物中也发现了越来越多的PP2C成员,该酶在不同的植物、不同的生长环境以及不同的生理活动中均有不同的调控方式,这也是目前及今后对PP2C成员的研究方向。本文主要介绍了植物PP2C家族的结构特点、亚细胞定位及其在生长发育、激素信号转导、逆境胁迫方面的研究现状,以及在提高植物生物产量、促进果实发育等方面的新进展。


关键词: 蛋白磷酸酶2C,  植物生长发育,  激素信号转导,  胁迫响应 
Fig. 1 Classification of protein phosphatases
[1]   HUNTER T. Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell, 1995,80(2):225-236.
[2]   COHEN P. The structure and regulation of protein phosphatases. Annual Review of Biochemistry, 1989,58:453-508.
[3]   KERK D, TEMPLETON G, MOORHEAD G B. Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiology, 2008,146(2):351-367. DOI:10.1104/pp.107.111393
doi: 10.1104/pp.107.111393
[4]   MACKINTOSH C, COGGINS J, COHEN P. Plant protein phosphatases. Subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase. Biochemical Journal, 1991,273(Pt 3):733-738.
[5]   WALKER C J, ZHANG R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 1990,345(6277):743-746.
[6]   FERREIRA P C G, HEMERLY A S, VILLARROEL R, et al. The Arabidopsis functional homolog of the p34cdc2 protein kinase. The Plant Cell, 1991,3(5):531-540.
[7]   LIN X, FENG X H, WATSON J C. Differential accumulation of transcripts encoding protein kinase homologs in greening pea seedlings. PNAS, 1991,88(16):6951-6955.
[8]   ANDERBERG R J, WALKER-SIMMONS M K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. PNAS, 1992,89(21):10183-10187.
[9]   董海涛,吴玉良,程志强,等.差异显示法克隆水稻抗白叶枯病相关蛋白激酶基因.浙江农业大学学报,1998,24(5):548-552.
DONG H T, WU Y L, CHENG Z Q, et al. Molecular cloning of differentially expressed genes with kinase motif induced by Xanthomonas oryzae pv. oryzae. Journal of Zhejiang Agricultural University, 1998,24(5):548-552. (in English)
[10]   T?R M, LOTZE M T, HOLTON N. Receptor-mediated signalling in plants: molecular patterns and programmes. Journal of Experimental Botany, 2009,60(13):3645-3654. DOI:10.1093/jxb/erp233
doi: 10.1093/jxb/erp233
[11]   LI A L, WANG X, LESEBERG C H, et al. Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signaling & Behavior, 2008,3(9):654-656. DOI:10.4161/psb.3.9.5757
doi: 10.4161/psb.3.9.5757
[12]   孙大业,马力耕.细胞信号转导.2版.北京:科学出版社,1998:350-355.
SUN D Y, MA L G. Cell Signal Transduction. 2nd ed. Beijing: Science Press, 1998:350-355. (in Chinese)
[13]   TIMUCIN E, SEZERMAN O U. Thermostability of the PYL-PP2C heterodimer is dependent on magnesium: in silico insights into the link between heat stress response and magnesium deficiency in plants. Journal of Chemical Information and Modeling, 2018,58(3):661-672. DOI:10.1021/acs.jcim.7b00655
doi: 10.1021/acs.jcim.7b00655
[14]   UHRIG R G, LABANDERA A M, MOORHEAD G B. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends in Plant Science, 2013,18(9):505-513. DOI:10.1016/j.tplants.2013.05.004
doi: 10.1016/j.tplants.2013.05.004
[15]   MOORHEAD G B, DE WEVER V, TEMPLETON G, et al. Evolution of protein phosphatases in plants and animals. Biochemical Journal, 2009,417(2):401-409. DOI:10.1042/BJ20081986
doi: 10.1042/BJ20081986
[16]   COHEN P, COHEN P T. Protein phosphatases come of age. Journal of Biological Chemistry, 1989,264(36):21435-21438.
[17]   FENG J R, ZHAO J W, LI J, et al. Functional characterization of the PP2C phosphatase CaPtc2p in the human fungal pathogen Candida albicans. Yeast, 2010,27(9):753-764. DOI:10.1002/yea.1778
doi: 10.1002/yea.1778
[18]   ARINO J, CASAMAYOR A, GONZALEZ A. Type 2C protein phosphatases in fungi. Eukaryot Cell, 2011,10(1):21-33. DOI:10.1128/EC.00249-10
doi: 10.1128/EC.00249-10
[19]   SCHWEIGHOFER A, HIRT H, MESKIENE I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends in Plant Science, 2004,9(5):236-243. DOI:10.1016/j.tplants.2004.03.007
doi: 10.1016/j.tplants.2004.03.007
[20]   FUCHS S, GRILL E, MESKIENE I, et al. Type 2C protein phosphatases in plants. FEBS Journal, 2013,280(2):681-693.
[21]   CARRASCO J L, ANCILLO G, MAYDA E, et al. A novel transcription factor involved in plant defense endowed with protein phosphatase activity. The EMBO Journal, 2003,22(13):3376-3384. DOI:10.1093/emboj/cdg323
doi: 10.1093/emboj/cdg323
[22]   CARRASCO J L, CASTELLó M J, NAUMANN K, et al. Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense. PLoS ONE, 2014,9(3):e90734. DOI:10.1371/journal.pone.0090734
doi: 10.1371/journal.pone.0090734
[23]   DUTTA S, LEWIS R J. Crystallization and preliminary crystallographic analysis of the kinase-recruitment domain of the PP2C-type phosphatase RsbU. Acta Crystallographica Section D: Structural Biology, 2003,59(Pt 1):191-193. DOI: 10.1107/S0907444902020723
doi: 10.1107/S0907444902020723
[24]   RODRIGUEZ P L. Protein phosphatase 2C (PP2C) function in higher plants. Plant Molecular Biology Reporter, 1998,38(6):919-927. DOI:10.1023/A:1006054607850
doi: 10.1023/A:1006054607850
[25]   UMBRASAITE J, SCHWEIGHOFER A, KAZANAVICIUTE V, et al. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PLoS ONE, 2010,5(12):e15357. DOI:10.1371/journal.pone.0015357
doi: 10.1371/journal.pone.0015357
[26]   SCHWEIGHOFER A, KAZANAVICIUTE V, SCHEIKL E, et al. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. The Plant Cell, 2007,19(7):2213-2224. DOI:10.1105/tpc.106.049585
doi: 10.1105/tpc.106.049585
[27]   XIANG Y, NAKABAYASHI K, DING J, et al. REDUCED DORMANCY5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis. The Plant Cell, 2014,26(11):4362-4375. DOI:10.1105/tpc.114.132811
doi: 10.1105/tpc.114.132811
[28]   LI Y S, SUN H, WANG Z F, et al. A novel nuclear protein phosphatase 2C negatively regulated by ABL1 is involved in abiotic stress and panicle development in rice. Molecular Biotechnology, 2013,54(2):703-710. DOI:10.1007/s12033-012-9614-8
doi: 10.1007/s12033-012-9614-8
[29]   ZHANG J H, LI X S, HE Z M, et al. Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in Arabidopsis thaliana. Molecular Biology Reports, 2013,40(3):2633-2644. DOI:10.1007/s11033-012-2350-0
doi: 10.1007/s11033-012-2350-0
[30]   BROCK A K, WILLMANN R, KOLB D, et al. The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiology, 2010,153(3):1098-1111. DOI:10.1104/pp.110.156109
doi: 10.1104/pp.110.156109
[31]   ZHANG Y S, LI Q, JIANG L, et al. Suppressing type 2C protein phosphatases alters fruit ripening and the stress response in tomato. Plant and Cell Physiology, 2018,59(1):142-154. DOI:10.1093/pcp/pcx169
doi: 10.1093/pcp/pcx169
[32]   ZHANG K W, XIA X Y, ZHANG Y Y, et al. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. The Plant Journal, 2012,69(4):667-678. DOI:10.1111/j.1365-313X.2011.04821.x
doi: 10.1111/j.1365-313X.2011.04821.x
[33]   SINGH A, JHA S K, BAGRI J, et al. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS ONE, 2015,10(4):e0125168. DOI:10.1371/journal.pone.0125168
doi: 10.1371/journal.pone.0125168
[34]   CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R, et al. Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology, 2010,61:651-679. DOI:10.1146/annurev-arplant-042809-112122
doi: 10
[35]   SINGH A, PANDEY A, SRIVASTAVA A K, et al. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Critical Reviews in Biotechnology, 2016,36(6):1023-1035. DOI:10.3109/07388551.2015.1083941
doi: 10.3109/07388551.2015.1083941
[36]   XUE T T, WANG D, ZHANG S Z, et al. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics, 2008,9:550. DOI:10.1186/1471-2164-9-550
doi: 10.1186/1471-2164-9-550
[37]   SHAZADEE H, KHAN N, WANG J J, et al. Identification and expression profiling of protein phosphatases (PP2C) gene family in Gossypium hirsutum L. International Journal of Molecular Sciences, 2019,20(6):1395. DOI:10.3390/ijms20061395
doi: 10.3390/ijms20061395
[38]   RIGOULOT S B, PETZOLD H E, WILLIAMS S P, et al. Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. Plant Molecular Biology, 2019,100(3):303-317. DOI:10.1007/s11103-019-00861-7
doi: 10.1007/s11103-019-00861-7
[39]   YU X, HAN J, WANG E, et al. Genome-wide identification and homoeologous expression analysis of PP2C genes in wheat (Triticum aestivum L.). Frontiers in Genetics, 2019,10:561. DOI:10.3389/fgene.2019.00561
doi: 10.3389/fgene.2019.00561
[40]   KHAN N, KE H, HU C M, et al. Genome-wide identification, evolution, and transcriptional profiling of PP2C gene family in Brassica rapa. BioMed Research International, 2019,2019:2965035. DOI:10.1155/2019/2965035
doi: 10.1155/2019/2965035
[41]   SINGH A, GIRI J, KAPOOR S, et al. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics, 2010,11:435. DOI:10.1186/1471-2164-11-435
doi: 10.1186/1471-2164-11-435
[42]   HIRAYAMA T, UMEZAWA T. The PP2C-SnRK2 complex: the central regulator of an abscisic acid signaling pathway. Plant Signaling & Behavior, 2010,5(2):160-163. DOI:10.4161/psb.5.2.10460
doi: 10.4161/psb.5.2.10460
[43]   HE Z H, WU J F, SUN X P, et al. The maize clade A PP2C phosphatases play critical roles in multiple abiotic stress responses. International Journal of Molecular Sciences, 2019,20(14):3573. DOI:10.3390/ijms20143573
doi: 10.3390/ijms20143573
[44]   KIM W, LEE Y, PARK J, et al. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant Cell Physiology, 2013,54(4):555-572. DOI:10.1093/pcp/pct017
doi: 10.1093/pcp/pct017
[45]   SONG S K, HOFHUIS H, LEE M M, et al. Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis. Developmental Cell, 2008,15(1):98-109. DOI:10.1016/j.devcel.2008.05.008
doi: 10.1016/j.devcel.2008.05.008
[46]   SPARTZ A K, REN H, PARK M Y, et al. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. The Plant Cell, 2014,26(5):2129-2142. DOI:10.1105/tpc.114.126037
doi: 10.1105/tpc.114.126037
[47]   GAGNE J M, CLARK S E. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. The Plant Cell, 2010,22(3):729-743. DOI:10.1105/tpc.109.068734
doi: 10.1105/tpc.109.068734
[48]   YU L P, MILLER A K, CLARK S E. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Current Biology, 2003,13(3):179-188. DOI:10.1016/S0960-9822(03)00042-3
doi: 10.1016/S0960-9822(03)00042-3
[49]   STONE J M, TROTOCHAUD A E, WALKER J C, et al. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiology, 1998,117(4):1217-1225. DOI:10.1104/pp.117.4.1217
doi: 10.1104/pp.117.4.1217
[50]   SONG S K, CLARK S E. POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Developmental Biology, 2005,285(1):272-284. DOI:10.1016/j.ydbio.2005.06.020
doi: 10.1016/j.ydbio.2005.06.020
[51]   STONE J M, COLLINGE M A, SMITH R D, et al. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science, 1994,266(5186):793-795. DOI:10.1126/science.7973632
doi: 10.1126/science.7973632
[52]   NISHIMURA N, TSUCHIYA W, MORESCO J J, et al. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications, 2018,9(1):2132. DOI:10.1038/s41467-018-04437-9
doi: 10.1038/s41467-018-04437-9
[53]   BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. PNAS, 2006,103(45):17042-17047. DOI:10.1073/pnas.0607877103
doi: 10.1073/pnas.0607877103
[54]   LU X, XIONG Q, CHENG T, et al. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant, 2017,10(5):670-684. DOI:10.1016/j.molp.2017.03.006
doi: 10
[55]   SUGIMOTO H, KONDO S, TANAKA T, et al. Over-expression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth. Journal of Experimental Botany, 2014,65(18):5385-5400. DOI:10.1093/jxb/eru297
doi: 10.1093/jxb/eru297
[56]   MERLOT S, GOSTI F, GUERRIER D, et al. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal, 2001,25(3):295-303.
[57]   LYNCH T, ERICKSON B J, FINKELSTEIN R R. Direct interactions of ABA-insensitive (ABI)-clade protein phosphatase (PP) 2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 2012,80(6):647-658. DOI:10.1007/s11103-012-9973-3
doi: 10.1007/s11103-012-9973-3
[58]   LEUNG J, MERLOT S, GIRAUDAT J. The ArabidopsisABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. The Plant Cell, 1997,9(5):759-771.
[59]   JIA H F, LU D, SUN J H, et al. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. Journal of Experimental Botany, 2013,64(6):1677-1687. DOI:10.1093/jxb/ert028
doi: 10.1093/jxb/ert028
[60]   MA Y, SZOSTKIEWICZ I, KORTE A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009,324(5930):1064-1068. DOI:10.1126/science.1172408
doi: 10.1126/science.1172408
[61]   MANOHAR M, WANG D, MANOSALVA P M, et al. Members of the abscisic acid co-receptor PP2C protein family mediate salicylic acid-abscisic acid crosstalk. Plant Direct, 2017,1(5):e00020. DOI:10.1002/pld3.20
doi: 10.1002/pld3.20
[62]   WIDJAJA I, LASSOWSKAT I, BETHKE G, et al. A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis. The Plant Journal, 2010,61(2):249-258. DOI:10.1111/j.1365-313X.2009.04047.x
doi: 10.1111/j.1365-313X.2009.04047.x
[63]   TAMURA S, TORIUMI S, SAITO J, et al. PP2C family members play key roles in regulation of cell survival and apoptosis. Cancer Science, 2006,97(7):563-567. DOI:10.1111/j.1349-7006.2006.00219.x
doi: 10.1111/j.1349-7006.2006.00219.x
[64]   BHASKARA G B, NGUYEN T T, VERSLUES P E. Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiology, 2012,160(1):379-395. DOI:10.1104/pp.112.202408
doi: 10.1104/pp.112.202408
[65]   NEE G, KRAMER K, NAKABAYASHI K, et al. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications, 2017,8(1):72. DOI:10.1038/s41467-017-00113-6
doi: 10.1038/s41467-017-00113-6
[66]   LAMMERS T, LAVI S. Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Critical Reviews in Biochemistry and Molecular Biology, 2007,42(6):437-461. DOI:10.1080/10409230701693342
doi: 10.1080/10409230701693342
[67]   MORENO-ALVERO M, YUNTA C, GONZALEZ-GUZMAN M, et al. Structure of ligand-bound intermediates of crop ABA receptors highlights PP2C as necessary ABA co-receptor. Molecular Plant, 2017,10(9):1250-1253. DOI:10.1016/j.molp.2017.07.004
doi: 10.1016/j.molp.2017.07.004
[68]   NISHIMURA N, SARKESHIK A, NITO K, et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. The Plant Journal, 2010,61(2):290-299. DOI:10.1111/j.1365-313X.2009.04054.x
doi: 10.1111/j.1365-313X.2009.04054.x
[69]   TAKEUCHI J, MIMURA N, OKAMOTO M, et al. Structure-based chemical design of abscisic acid antagonists that block PYL-PP2C receptor interactions. ACS Chemical Biology, 2018,13(5):1313-1321. DOI:10.1021/acschembio.8b00105
doi: 10.1021/acschembio.8b00105
[70]   CHEN J H, ZHANG D Z, ZHANG C, et al. A putative PP2C-encoding gene negatively regulates ABA signaling in Populus euphratica. PLoS ONE, 2015,10(10):e0139466. DOI:10.1371/journal.pone.0139466
doi: 10.1371/journal.pone.0139466
[71]   LORENZO O, NICOLAS C, NICOLAS G, et al. Molecular cloning of a functional protein phosphatase 2C (FsPP2C2) with unusual features and synergistically up-regulated by ABA and calcium in dormant seeds of Fagus sylvatica. Physiologia Plantarum, 2002,114(3):482-490. DOI:10.1034/j.1399-3054.2002.1140318.x
doi: 10.1034/j.1399-3054.2002.1140318.x
[72]   YUSUF M, HASAN S A, ALI B, et al. Effect of salicylic acid on salinity-induced changes in Brassica juncea. Journal of Integrative Plant Biology, 2008,50(9):1096-1102. DOI:10.1111/j.1744-7909.2008.00697.x
doi: 10
[73]   BHALOTHIA P, SANGWAN C, ALOK A, et al. PP2C-like promoter and its deletion variants are induced by ABA but not by MeJA and SA in Arabidopsis thaliana. Frontiers in Plant Science, 2016,7:547. DOI:10.3389/fpls.2016.00547
doi: 10.3389/fpls.2016.00547
[74]   LIU S Y, ZHANG L F, LI Z H, et al. Effects of plastic mulch on soil moisture and temperature and limiting factors to yield increase for dryland spring maize in the North China. Chinese Journal of Applied Ecology, 2014,25(11):3197-3206.
[75]   DUPUIS I, DUMAS C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 1990,94(2):665-670.
[76]   PERDOMO J A, CONESA M A, MEDRANO H, et al. Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: relationship with morphological and physiological acclimation. Physiologia Plantarum, 2015,155(2):149-165. DOI:10.1111/ppl.12303
doi: 10.1111/ppl.12303
[77]   LEE M W, JELENSKA J, GREENBERG J T. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. The Plant Journal, 2008,54(3):452-465. DOI:10.1111/j.1365-313X.2008.03439.x
doi: 10.1111/j.1365-313X.2008.03439.x
[78]   PARK C J, PENG Y, CHEN X, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biology, 2008,6(9):e231. DOI:10.1371/journal.pbio.0060282
doi: 10.1371/journal.pbio.0060282
[79]   HU X B, ZHANG H J, LI G J, et al. Ectopic expression of a rice protein phosphatase 2C gene OsBIPP2C2 in tobacco improves disease resistance. Plant Cell Reports, 2009,28(6):985-995. DOI:10.1007/s00299-009-0701-7
doi: 10.1007/s00299-009-0701-7
[80]   BHASKARA G B, WEN T N, NGUYEN T T, et al. Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. The Plant Cell, 2017,29(1):169-191. DOI:10.1105/tpc.16.00847
doi: 10.1105/tpc.16.00847
[81]   MANABE Y, BRESSAN R A, WANG T, et al. The Arabidopsis kinase-associated protein phosphatase regulates adaptation to Na+ stress. Plant Physiology, 2008,146(2):612-622. DOI:10.1104/pp.107.109009
doi: 10.1104/pp.107.109009
[82]   LENKA S K, MUTHUSAMY S K, CHINNUSAMY V, et al. Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Molecular Biotechnology, 2018,60(5):350-361. DOI:10.1007/s12033-018-0076-5
doi: 10.1007/s12033-018-0076-5
[83]   YU X F, HAN J P, LI L, et al. Wheat PP2C-a10 regulates seed germination and drought tolerance in transgenic Arabidopsis. Plant Cell Reports, 2020,39:635-651. DOI:10.1007/s00299-020-02520-4
doi: 10
[84]   HU X L, LIU L X, XIAO B L, et al. Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2. Journal of Plant Physiology, 2010,167(15):1307-1315. DOI:10.1016/j.jplph.2010.04.014
doi: 10.1016/j.jplph.2010.04.014
[85]   LIU X, ZHU Y M, ZHAI H, et al. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner. Biochemical and Biophysical Research Communications, 2012,422(4):710-715. DOI:10.1016/j.bbrc.2012.05.064
doi: 10.1016/j.bbrc.2012.05.064
[86]   HU W, YAN Y, HOU X W, et al. TaPP2C1, a group F2 protein phosphatase 2C gene, confers resistance to salt stress in transgenic tobacco. PLoS ONE, 2015,10(6):e0129589. DOI:10.1371/journal.pone.0129589
doi: 10.1371/journal.pone.0129589
[87]   KERK D, BULGRIEN J, SMITH D W, et al. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiology, 2002,129(2):908-925. DOI:10.1104/pp.004002
doi: 10.1104/pp.004002
[88]   YOSHIDA T, MOGAMI J, YAMAGUCHI-SHINOZAKI K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 2014,21:133-139. DOI:10.1016/j.pbi.2014.07.009
doi: 10.1016/j.pbi.2014.07.009
[89]   SOON F F, NG L M, ZHOU X E, et al. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science, 2012,335(6064):85-88. DOI:10.1126/science.1215106
doi: 10.1126/science.1215106
[90]   ZHOU X E, SOON F F, NG L M, et al. Catalytic mechanism and kinase interactions of ABA-signaling PP2C phosphatases. Plant Signaling & Behavior, 2012,7(5):581-588. DOI:10.4161/psb.19694
doi: 10.4161/psb.19694
[91]   DONELLA-DEANA A, BOSCHETTI M, PINNA L A. Monitoring of PP2A and PP2C by phosphothreonyl peptide substrates. Methods in Enzymology, 2003,366:3-17. DOI:10.1016/S0076-6879(03)66001-5
doi: 10
[92]   BAI G, YANG D H, ZHAO Y, et al. Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Molecular Biology, 2013,83(6):651-664. DOI:10.1007/s11103-013-0114-4
doi: 10.1007/s11103-013-0114-4
[1] Yinping TIAN,Wen YI. Advances in the study of core fucosylation in mammals[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 1-10.
[2] Ranran ZHENG,Jingzhi WU,Zhijia GU,Wenbin YUAN,Hongzhi WU. Study on the floral scent components of Lilium amoenum with rose fragrance and Lilium bakerianum var. rubrum with orange fragrance[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 32-42.
[3] Yingjie ZHANG,Pengfei XU. Research progress of left-right asymmetry development in vertebrates[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 647-659.
[4] Shengyan SU,Linbing ZHANG,Haiyang LI,Can GAO,Xinjin HE,Can TIAN,Jianlin LI,Meiyao WANG,Yongkai TANG. Genetic diversity and structure analyses of largemouth bass (Micropterus salmoides) original and cultured populations based on microsatellite markers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 687-698.
[5] Yuting JIANG,Qi SUN,Huanzhi XU,Wang SHEN,Xiaolin ZHANG,Meihua FAN,Zhi LIAO. Recombinant expression and functional analysis of transgelin-like protein from the shell of Mytilus coruscus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 539-550.
[6] Shurong WANG, Yuan YUAN, Yang LIU, Junlong MENG. Leucopholiota decorosa: a newly recorded species of Tricholomataceae (Agaricaceae) in China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 599-603.
[7] Lingjuan XUAN,Shaoyu CHENG,Mengyi DAI,Zhuowei WANG,Yamei SHEN. Subcellular localization and expression analysis of MlSOC1 genes during flower bud differentiation period in Magnolia liliflora[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 407-416.
[8] Xuan CAO,Xiaodong ZHENG. Transcriptomic difference analysis of Meyerozyma guilliermondii in response to salt stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 400-406.
[9] Jiaojiao CHEN,Chengyin LU,Guoqing WANG,Liyan CHEN,Huiling LIANG,Yingbin ZHANG. Comparison of three different methods for adsorption of aroma compounds for green tea, yellow tea and white tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 449-458.
[10] Lindong WU,Tingting LI,Guolin FU,Chuping WU,Yulong YU,Zhigao WANG,Weixing SHENG,Jinru ZHU,Bo JIANG,Jiejie JIAO,Xiangying WEN,Weigao YUAN. Niche and interspecific relationship of the wild plant Styrax zhejiangensis with extremely small population[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 459-474.
[11] Xiaomeng DU,Gang ZHENG,Yiwen FANG,Mengcheng JI. Description on epiphyllous liverworts from Hangzhou West Lake scenic area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 484-488.
[12] Tianjiao ZHOU,Xiaohui DING,Junhui WANG. Strategies for modulation and optimization of the photorespiration pathway in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 271-279.
[13] Xiaoyun LIU,Yong XU,Shiping TIAN,Tong CHEN. Progress on application of secondary metabolites from bamboo in controlling diseases and keeping freshness of fruits and vegetables[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 17-26.
[14] Ning XIAO,Qinghua LUO,Huaiqing DENG,Jun ZHOU,Tao LUO. Morphology, phylogeny and taxonomy of Amolops ricketti (Amphibia, Ranidae) in Guizhou Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 736-745.
[15] Kun XU,Lin CHEN,Yingying BIAN,Jianing XIN,Xinguo YANG. Allelopathy of aqueous extract from Artemisia scoparia root on seed germination and seedling growth of four Agropyron plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 574-584.