Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (6): 687-698    DOI: 10.3785/j.issn.1008-9209.2020.04.031
Quantitative genetics & bioinformatics     
Genetic diversity and structure analyses of largemouth bass (Micropterus salmoides) original and cultured populations based on microsatellite markers
Shengyan SU1(),Linbing ZHANG2,Haiyang LI3,Can GAO2,Xinjin HE4,Can TIAN5,Jianlin LI1,Meiyao WANG1,Yongkai TANG1()
1.Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
2.Zhanglin Fisheries Co. , Ltd. , Tonglin 244000, Anhui, China
3.Institute of Aquaculture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
4.College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, Shanxi, China
5.National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Download: HTML   HTML (   PDF(1423KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to examine the genetic background of Micropterus salmoides, eleven microsatellite loci were used to study the genetic diversity and structure of the introduced subspecies (California M. salmoides), selected subspecies from Taiwan Province (Taiwan-California M. salmoides) and cultured species (Youlu No. 1) in mainland. The results showed that both the number of alleles and effective alleles was higher in California M. salmoides than in Taiwan-California M. salmoides and Youlu No. 1. The observed heterozygosity and expected heterozygosity at five loci were significantly higher in California population than in Taiwan-California and Youlu No. 1 populations, which were similar. According to the polymorphic information content, eleven loci in the California population were at high polymorphic levels. Six loci and four loci were at highly polymorphic levels for Youlu No. 1 and Taiwan-California populations, respectively. In the genetic equilibrium test, it was found that there were more loci deviating from Hardy-Weinberg equilibrium in Taiwan-California population, and there were three linkage pairs in California population (P<0.05). For the two-phased model of mutation (TPM), both WILCOXON and sign tests showed that California population was in a status of mutation-drift disequilibrium. For population structure, it was found by analysis of molecular variance (AMOVA) that 15.57% of the genetic variation came from among populations, 25.05% from within populations, and 59.38% from among individuals (P<0.01). The genetic distance between California population and Youlu No. 1 population was the largest, followed by that between California population and Taiwan-California population. When the K was two, there were significant differences in genetic structures between California population and other two populations. Through individual population identification, California population had the lowest rate of misjudgment, followed by Youlu No. 1 and Taiwan-California populations. When the accuracy was 85.00%, the probabilities of correct discrimination of California, Youlu No. 1 and Taiwan-California populations were 67.70%, 53.30% and 20.00%, respectively. According to the analysis of genetic diversity, genetic distance and equilibrium test, it was found that the original species of California had high polymorphism, and the genetic distance was bigger than that of the other two populations, and there might be genetic bottleneck. It is suggested that the species of M. salmoides introduced from the United States should be expanded and cultivated systematically.



Key wordsMicropterus salmoides      microsatellite marker      genetic diversity      genetic structure     
Received: 03 April 2020      Published: 31 December 2020
CLC:  Q 75  
Corresponding Authors: Yongkai TANG     E-mail: susy@ffrc.cn;tangyk@ffrc.cn
Cite this article:

Shengyan SU,Linbing ZHANG,Haiyang LI,Can GAO,Xinjin HE,Can TIAN,Jianlin LI,Meiyao WANG,Yongkai TANG. Genetic diversity and structure analyses of largemouth bass (Micropterus salmoides) original and cultured populations based on microsatellite markers. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 687-698.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.04.031     OR     http://www.zjujournals.com/agr/Y2020/V46/I6/687


基于微卫星标记的大口黑鲈(Micropterus salmoides)原种和养殖群体遗传多样性和结构分析

为了解大口黑鲈(Micropterus salmoides)的种质资源遗传背景,采用11个微卫星位点研究了大口黑鲈原种(加州原种)、从台湾省引进的台湾选育种(台湾加州鲈)和大陆本土化的养殖种(优鲈1号)的遗传多样性及遗传结构。结果显示:加州原种的等位基因数和有效等位基因数显著高于优鲈1号和台湾加州鲈;其中,加州原种的5个位点的观察杂合度和期望杂合度显著高于优鲈1号和台湾加州鲈,而后两者类似。从多态信息含量来看,加州原种群体中有11个位点处于高度多态水平,优鲈1号群体和台湾加州鲈群体分别有6和4个位点处于高度多态水平。在遗传平衡检验中发现:台湾加州鲈群体中偏离哈代-温伯格平衡的位点较多(P<0.05),而加州原种存在3个连锁座位对的连锁不平衡状态(P<0.05)。在双相突变模型中,无论是WILCOXON检验还是符号检验,加州原种群体均处于突变-漂移不平衡状态。分子方差分析(analysis of molecular variance, AMOVA)发现:大口黑鲈群体中15.57%的遗传变异来自群体间,25.05%的遗传变异来自群体内个体间,59.38%的遗传变异来自个体间(P<0.01)。聚类分析发现:加州原种和优鲈1号之间的遗传距离最大,其次为加州原种和台湾加州鲈之间的遗传距离。当K为2时,加州原种与优鲈1号、台湾加州鲈的遗传结构有明显的差异。对个体的种群鉴定发现:加州原种群体被误判的比例最低,其次是优鲈1号,最后是台湾加州鲈。在判别准确率为85.00%的水平上,加州原种被判别正确的概率是67.70%,优鲈1号是53.30%,台湾加州鲈是20.00%。从遗传多样性、遗传距离、平衡分析均发现,加州原种多态性高,遗传距离较另外2个群体较远,并可能存在过遗传瓶颈,聚类和个体的种群鉴定进一步证明了此观点。这提示从美国引进的大口黑鲈原种应该扩群保种并系统地进行育种开发工作。


关键词: 大口黑鲈,  微卫星标记,  遗传多样性,  遗传结构 

名称

Name

正向引物(5′→3′)

Forward primer (5′→3′)

反向引物(5′→3′)

Reverse primer (5′→3′)

扩增片段长度

Product

size/bp

退火温度

Annealing

temperature/℃

JZL114[18]CTACAGGTTAGGGAGTTACACGTGCTGAGGACACAACGAGGT192~23055
MiSaTPW01[18]AGTAAAGGACCACCCTTGTCCAGCCTGGTCATTAGGTTTCGGAG288~29856
JZL37[7]TCCAGCCTTCTTGATTCCTCCCCGTTTAGCCAGAGAAGTG177~20156
Mdo6[18]TGAAATGTACGCCAGAGCAGTGTGTGGGTGTTTATGTGGG146~16455
MiSaTPW117[18]TGTGAAAGGCACAACACAGCCTGCATCGACCTGCAGACCAGCAACACT209~24255
JZL108[18]GTGACAGATGAGCGGAGAAGATGCTTGAGATACGACTA276~28355
MiSaTPW123[18]GCTAACTTAATCTGCTGGATGGTGTGAACCTTCATAGGACAGCC148~16655
JZL85[7]GGGGCTCACTCACTGTGTTTGTGCGCAGACAGCTAGACAG199~22556
MiSaTPW165[18]GTTCGCATCTGAATGCATGTGGTGCAGTGAAGGTATTAGCCTCAGCCTACA236~25855
MiSaTPW96[18]CTTCTAAATGTGTGTAGGGTTGCAGCTTAGCATAAAGACTGGGAAC372~40555
Mdo7[18]TCAAACGCACCTTCACTGACGTCACTCCCATCATGCTCCT156~17255
Table 1 Information for microsatellite primers

参量

Parameter

品种

Species

JZL114MiSaTPW01JZL37Mdo6MiSaTPW117JZL108

等位基因数

Number of alleles

加州原种 California M. salmoides8346610
优鲈1号 Youlu No. 1533534
台湾加州鲈 Taiwan-California M. salmoides623434
总计 Total11569611

有效等位基因数

Effective number

of alleles

加州原种 California M. salmoides4.891.811.771.732.783.42
优鲈1号 Youlu No. 13.151.271.182.872.041.60
台湾加州鲈 Taiwan-California M. salmoides4.051.301.142.192.601.59
总计 Total4.791.811.312.362.922.06

观察杂合度

Observed

heterozygosity

加州原种 California M. salmoides0.530.500.090.290.560.56
优鲈1号 Youlu No. 10.790.080.120.730.540.31
台湾加州鲈 Taiwan-California M. salmoides1.000.000.100.800.530.30
总计 Total0.830.130.100.610.540.38

期望杂合度

Expected

heterozygosity

加州原种 California M. salmoides0.820.460.440.430.660.72
优鲈1号 Youlu No. 10.700.210.150.660.520.38
台湾加州鲈 Taiwan-California M. salmoides0.770.240.130.550.630.38
总计 Total0.800.450.240.580.660.52

参量

Parameter

品种

Species

JZL85MiSaTPW123MiSaTPW165MiSaTPW96Mdo7

等位基因数

Number of alleles

加州原种 California M. salmoides53496
优鲈1号 Youlu No. 153354
台湾加州鲈 Taiwan-California M. salmoides52443
总计 Total835128

有效等位基因数

Effective number

of alleles

加州原种 California M. salmoides2.001.422.434.863.23
优鲈1号 Youlu No. 12.431.692.282.671.46
台湾加州鲈 Taiwan-California M. salmoides2.451.761.872.361.57
总计 Total3.051.652.223.471.94

观察杂合度

Observed

heterozygosity

加州原种 California M. salmoides0.640.350.620.820.48
优鲈1号 Youlu No. 10.480.180.580.790.29
台湾加州鲈 Taiwan-California M. salmoides0.430.430.430.830.43
总计 Total0.510.320.520.820.40

期望杂合度

Expected

heterozygosity

加州原种 California M. salmoides0.510.300.610.820.70
优鲈1号 Youlu No. 10.600.420.570.640.32
台湾加州鲈 Taiwan-California M. salmoides0.600.440.470.590.37
总计 Total0.680.400.550.720.49
Table 2 Genetic diversity testing results of M. salmoides populations

位点

Locus

观察F

Observed F value

最小F

Minimum

value of F

最大F

Maximum

value of F

平均值

Mean

标准误

Standard error

95%的置信下限

95% lower

confidence limit

95%的置信上限

95% upper

confidence limit

JZL1140.210.090.870.260.010.150.49
MiSaTPW010.550.200.940.510.030.270.86
JZL370.770.170.940.450.020.240.82
Mdo60.420.110.910.340.020.180.65
MiSaTPW1170.340.170.930.450.020.240.81
JZL1080.490.090.890.280.010.150.57
MiSaTPW1230.610.330.980.690.040.380.98
JZL850.330.130.920.360.020.190.69
MiSaTPW1650.450.200.940.510.030.270.86
MiSaTPW960.290.080.860.250.010.140.51
Mdo70.520.130.920.370.020.200.67
Table 3 Ewens-Watterson neutral testing analysis in M. salmoides populations

位点

Locus

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

总体

All

JZL1140.430.770.010.10
MiSaTPW010.730.010.000.00
JZL370.000.110.090.00
Mdo60.100.000.000.00
MiSaTPW1170.700.130.470.23
JZL1080.480.510.010.02
MiSaTPW1230.690.000.930.02
JZL850.790.160.030.05
MiSaTPW1650.790.640.210.21
MiSaTPW960.810.500.050.20
Mdo70.490.080.340.02
Table 4 Likelihood ratio test for Hardy-Weinberg equilibrium of microsatellite loci

参量

Parameter

模型

Model

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

杂合度过量期望基因座位数

Expected number of loci with heterozygosity excess

IAM6.366.135.79
TPM6.526.386.16
SMM6.606.586.30

杂合度过量观察基因座位数

Observed number of loci with heterozygosity excess

IAM579
TPM366
SMM033

杂合度缺失观察基因座位数

Observed number of loci with heterozygosity

deficiency

IAM642
TPM855
SMM1188

符号检验

Sign test

IAM0.300.420.05
TPM0.030.290.58
SMM0.000.030.04

WILCOXON检验(双尾)

WILCOXON test (two-tailed)

IAM0.700.900.10
TPM0.020.460.97
SMM0.000.020.21
Table 6 Number of loci expected to be excessive or missing under IAM, TPM and SMM tests in M. salmoides

指数

Index

JZL114MiSaTPW01JZL37Mdo6MiSaTPW117JZL108MiSaTPW123JZL85MiSaTPW165MiSaTPW96Mdo7
Nm2.720.304.373.761.673.2711.491.174.372.083.24
Fis-0.040.350.56-0.130.080.200.150.08-0.01-0.230.12
Fit0.050.650.59-0.060.200.250.170.240.05-0.100.18
Fst0.080.40.050.060.130.070.020.180.050.110.07
Table 8 F-statistics of 11 microsatellite loci in M. salmoides populations

参量

Parameter

品种

Species

JZL114MiSaTPW01JZL37Mdo6MiSaTPW117JZL108

香农指数

Shannon-Wiener index

加州原种 California M. salmoides1.780.790.820.921.341.60
优鲈1号 Youlu No. 11.240.440.321.250.880.72

台湾加州鲈

Taiwan-California M. salmoides

1.500.390.280.931.030.76

多态信息含量

Polymorphism information

content

加州原种 California M. salmoides0.710.600.630.490.710.76
优鲈1号 Youlu No. 10.750.390.380.650.610.41

台湾加州鲈

Taiwan-California M. salmoides

0.740.200.130.480.610.37

参量

Parameter

品种

Species

JZL85MiSaTPW123MiSaTPW165MiSaTPW96Mdo7

香农指数

Shannon-Wiener index

加州原种 California M. salmoides1.010.531.071.811.43
优鲈1号 Youlu No. 11.110.690.931.160.65

台湾加州鲈

Taiwan-California M. salmoides

1.120.620.860.980.67

多态信息含量

Polymorphism information

content

加州原种 California M. salmoides0.660.490.590.750.74
优鲈1号 Youlu No. 10.610.480.680.720.39

台湾加州鲈

Taiwan-California M. salmoides

0.600.340.460.570.36
Table 7 Genetic diversity testing results of M. salmoides populations

变异来源

Source of variation

自由度

Degree of freedom

平方和

Sum of squares

方差组分

Variance component

变异百分率

Percentage of variation/%

总计 Total179626.723.70100.00
群体间 Among populations277.170.5815.57

群体内个体间

Among individuals within populations

87352.050.9325.05
个体间 Among individuals90197.502.1959.38
Table 9 AMOVA results of M. salmoides populations

品种

Species

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

加州原种 California M. salmoides10.680.70
优鲈1号 Youlu No. 10.3910.98
台湾加州鲈 Taiwan-California M. salmoides0.360.021
Table 10 Genetic identity and genetic distance of M. salmoides populations
Fig. 1 Clustering and genetic structure analysis of M. salmoides populationsA. Adjacent clustering results (the numbers in the figure standard for relative lengths of the lines); B. Genetic structure analysis of M. salmoides populations.

品种

Species

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

abcabcabc
加州原种 California M. salmoides1721000000
优鲈1号 Youlu No. 1331853202
台湾加州鲈 Taiwan-California M. salmoides5241020402
Table 11 Number of individuals misjudged of M. salmoides populations
位点 LocusPP value
12

加州原种

California M. salmoides

优鲈1号

Youlu No. 1

台湾加州鲈

Taiwan-California M. salmoides

总体

All

JZL114MiSaTPW010.670.460.430.67
JZL114JZL371.001.000.911.00
MiSaTPW01JZL371.001.000.360.92
JZL114Mdo60.840.270.070.21
MiSaTPW01Mdo60.790.001.000.04
JZL37Mdo60.250.800.810.72
JZL114MiSaTPW1170.030.320.520.10
MiSaTPW01MiSaTPW1170.851.000.080.51
JZL37MiSaTPW1170.920.330.550.74
Mdo6MiSaTPW1170.050.890.110.10
JZL114JZL1081.000.740.700.97
MiSaTPW01JZL1080.620.010.560.05
JZL37JZL1080.020.760.380.11
Mdo6JZL1080.270.020.560.07
MiSaTPW117JZL1080.350.820.950.85
JZL114MiSaTPW1230.350.460.550.56
MiSaTPW01MiSaTPW1230.500.160.180.20
JZL37MiSaTPW1230.390.250.060.12
Mdo6MiSaTPW1230.860.020.160.07
MiSaTPW117MiSaTPW1230.140.910.640.54
JZL108MiSaTPW1230.260.420.000.01
JZL114JZL850.690.190.830.62
MiSaTPW01JZL850.810.540.220.59
JZL37JZL850.400.200.850.49
Mdo6JZL850.460.790.510.76
MiSaTPW117JZL850.800.170.650.56
JZL108JZL850.870.460.300.65
MiSaTPW123JZL850.400.440.760.67
JZL114MiSaTPW1651.000.820.981.00
MiSaTPW01MiSaTPW1651.000.420.520.80
JZL37MiSaTPW1650.290.170.010.03
Mdo6MiSaTPW1650.090.810.430.33
MiSaTPW117MiSaTPW1650.010.490.120.02
JZL108MiSaTPW1650.670.630.230.59
MiSaTPW123MiSaTPW1650.260.140.340.19
JZL85MiSaTPW1650.990.830.560.96
JZL114MiSaTPW960.420.170.570.37
MiSaTPW01MiSaTPW960.521.001.000.97
JZL37MiSaTPW960.940.500.270.66
Mdo6MiSaTPW960.060.330.450.14
MiSaTPW117MiSaTPW960.860.070.690.38
JZL108MiSaTPW960.970.430.010.09
MiSaTPW123MiSaTPW960.140.120.760.19
JZL85MiSaTPW960.880.440.200.53
MiSaTPW165MiSaTPW960.110.350.380.20
JZL114Mdo70.220.480.240.28
MiSaTPW01Mdo70.881.000.520.95
JZL37Mdo70.290.131.000.37
Mdo6Mdo70.790.470.700.85
MiSaTPW117Mdo70.680.880.410.84
JZL108Mdo70.300.690.350.51
MiSaTPW123Mdo70.140.040.810.10
JZL85Mdo70.060.200.980.19
MiSaTPW165Mdo71.000.540.890.96
MiSaTPW96Mdo70.550.570.700.81
Table 5 Linkage disequilibrium test for microsatellite locus pairs in M. salmoides populations
[1]   梁素娴,白俊杰,叶星,等.养殖大口黑鲈的遗传多样性分析.大连水产学院学报,2007,22(4):260-263. DOI:10.3969/j.issn.1000-9957.2007.04.005
LIANG S X, BAI J J, YE X, et al. RAPD analysis of genetic diversity for cultured largemouth bass Micropterus salmoides. Journal of Dalian Fisheries University, 2007,22(4):260-263. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-9957.2007.04.005
[2]   陈文华,阮瑞霞,宣云峰,等.3个不同地理群体大口黑鲈遗传多样性分析.江苏农业科学,2012,40(8):231-233. DOI:10.3969/j.issn.1002-1302.2012.08.092
CHEN W H, RUAN R X, XUAN Y F, et al. Genetic diversity of Micropterus salmoides in 3 different geographical populations. Jiangsu Agricultural Sciences, 2012,40(8):231-233. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-1302.2012.08.092
[3]   卢建峰,白俊杰,李胜杰,等.大口黑鲈选育群体遗传多样性的AFLP分析.淡水渔业,2010,40(3):3-7. DOI:10.3969/j.issn.1000-6907.2010.03.001
LU J F, BAI J J, LI S J, et al. AFLP analysis of genetic diversity in consecutive selected populations of largemouth bass (Micropterus salmoides). Freshwater Fisheries, 2010,40(3):3-7. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6907.2010.03.001
[4]   卢建峰,白俊杰,李胜杰.大口黑鲈选育群体和养殖群体的遗传多样性研究分析//中国水产学会学术年会论文摘要集.北京:中国水产学会,2009.
LU J F, BAI J J, LI S J. AFLP analysis of genetic diversity for consecutive selected populations and cultured stocks of largemouth bass (Micorpterus salmoides)//Proceedings ofthe Annual Meeting of China Society of Fisheries. Beijing: China Society of Fisheries, 2009. (in Chinese with English abstract)
[5]   孙成飞,谢汶峰,胡婕,等.大口黑鲈3个养殖群体的遗传多样性分析.南方水产科学,2019,15(2):64-71. DOI:10.12131/20180203
SUN C F, XIE W F, HU J, et al. Genetic diversity analysis of three cultured populations of Micropterus salmoides. South China Fisheries Science, 2019,15(2):64-71. (in Chinese with English abstract)
doi: 10.12131/20180203
[6]   樊佳佳,白俊杰,李胜杰,等.驯食配合饲料的大口黑鲈3个选育世代的遗传多样性分析.渔业科学进展,2019,40(4):57-64. DOI:10.19663/j.issn2095-9869.20180420002
FAN J J, BAI J J, LI S J, et al. Analysis on genetic diversity of three breeding populations of largemouth bass using formulated feeds. Progress in Fishery Sciences, 2019,40(4):57-64. (in Chinese with English abstract)
doi: 10.19663/j.issn2095-9869.20180420002
[7]   李镕,白俊杰,李胜杰,等.大口黑鲈选育群体遗传结构的微卫星分析.广东海洋大学学报,2010,30(3):11-15. DOI:10.3969/j.issn.1673-9159.2010.03.003
LI R, BAI J J, LI S J, et al. Analysis on genetic structure of selected population of largemouth bass by microsatellite DNA markers. Journal of Guangdong Ocean University, 2010,30(3):11-15. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-9159.2010.03.003
[8]   樊佳佳,白俊杰,李胜杰,等.大口黑鲈微卫星DNA指纹图谱的构建和遗传结构分析.水生生物学报,2012,36(4):600-609. DOI:10.3724/SP.J.1035.2012.00600
FAN J J, BAI J J, LI S J, et al. Establishment of DNA fingerprinting and analysis on genetic structure of largemouth bass with microsatellite. Acta Hydrobiologica Sinica, 2012,36(4):600-609. (in Chinese with English abstract)
doi: 10.3724/SP.J.1035.2012.00600
[9]   蔡磊,白俊杰,李胜杰,等.大口黑鲈北方亚种和佛罗里达亚种及其杂交子代的遗传分析.中国水产科学,2012,19(1):70-76. DOI:10.3724/SP.J.1118.2012.00070
CAI L, BAI J J, LI S J, et al. Genetic analysis of northern largemouth bass, Florida largemouth bass, and their reciprocal hybrids. Journal of Fishery Sciences of China, 2012,19(1):70-76. (in Chinese with English abstract)
doi: 10.3724/SP.J.1118.2012.00070
[10]   李胜杰,白俊杰,叶星,等.基于线粒体D-loop区探讨我国养殖大口黑鲈的分类地位和遗传变异.海洋渔业,2008(4):291-296. DOI:10.3969/j.issn.1004-2490.2008.04.001
LI S J, BAI J J, YE X, et al. Approach on the taxonomic status and genetic variation of largemouth bass (Micropterus salmoides) cultured in China based on mitochondrial D-loop gene. Marine Fishery, 2008(4):291-296. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-2490.2008.04.001
[11]   张大莉,董仕,白俊杰,等.大口黑鲈北方亚种和佛罗里达亚种mtDNA COⅠ序列的分析.大连海洋大学学报,2014,29(3):212-216. DOI:10.3969/J.ISSN.2095-1388.2014.03.002
ZHANG D L, DONG S, BAI J J, et al. Sequence analysis of mtDNA COⅠ region in northern and Florida subspecies of largemouth bass Micropterus salmoides. Journal of Dalian Ocean University, 2014,29(3):212-216. (in Chinese with English abstract)
doi: 10.3969/J.ISSN.2095-1388.2014.03.002
[12]   梁素娴,孙效文,白俊杰,等.微卫星标记对中国引进加州鲈养殖群体遗传多样性的分析.水生生物学报,2008,32(5):694-700. DOI:10.3724/SP.J.0000.2008.50694
LIANG S X, SUN X W, BAI J J, et al. Genetic analysis for cultured largemouth bass (Micropterus Salmoides) in China with microsatellites. Acta Hydrobiologica Sinica, 2008,32(5):694-700. (in Chinese with English abstract)
doi: 10.3724/SP.J.0000.2008.50694
[13]   任桂静.玉筋鱼和松江鲈微卫星标记的开发及群体遗传学研究.山东,青岛:中国海洋大学,2012.
REN G J. Development of microsatellite DNA markers and population genetics for sand lance (Ammodytes personatus) and roughskin sculpin (Trachidermus fasciatus). Qingdao, Shangdong: Ocean University of China, 2012. (in Chinese with English abstract)
[14]   祁得林.黄河上游花斑裸鲤Cyt b基因的序列变异和遗传多样性.动物学研究,2009,30(3):255-261. DOI:10.3724/SP.J.1141.2009.03255
QI D L. Genetic variation and diversity of Gymncypris eckloni in the upper yellow river inferred from mitochondrial cytochrome b gene. Zoological Research, 2009,30(3):255-261. (in Chinese with English abstract)
doi: 10.3724/SP.J.1141.2009.03255
[15]   PRUETT C L, WINKER K. Northwestern song sparrow populations show genetic effects of sequential colonization. Molecular Ecology, 2005,14(5):1421-1434. DOI:10.1111/j.1365-294X.2005.02493.x
doi: 10.1111/j
[16]   CLEGG S M, DEGNAN S M, KIKKAWA J, et al. Genetic consequences of sequential founder events by an island-colonizing bird. PNAS, 2002,99(12):8127-8132. DOI:10.1073/pnas.102583399
doi: 10.1073/pnas.102583399
[17]   CORNUET J M, LUIKART G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 1996,144(4):2001-2014. DOI:10.3892/ijo_00000551
doi: 10.3892/ijo_00000551
[18]   樊佳佳,白俊杰,李小慧,等.大口黑鲈生长性状的微卫星DNA标记筛选.遗传,2009,31(5):515-522. DOI:10.3724/SP.J.1005.2009.00515
FAN J J, BAI J J, LI X H, et al. Identification of microsatellite markers associated with growth traits in largemouth bass (Micropterus salmoides L.). Hereditas (Beijing), 2009,31(5):515-522. (in Chinese with English abstract)
doi: 10.3724/SP.J.1005.2009.00515
[19]   YEH F C, BOYLE T. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997,129:157.
[20]   ROUSSET F. GENEPOP’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 2008,8(1):103-106. DOI:10.1111/j.1471-8286.2007.01931.x
doi: 10.1111/j.1471-8286.2007.01931.x
[21]   BOTSTEIN D R, WHITE R L, SKOLNICK M H, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980,32(3):314-331.
[22]   EXCOFFIER L, LISCHER H E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 2010,10(3):564-567. DOI:10.1111/j.1755-0998.2010.02847.x
doi: 10.1111/j.1755-0998
[23]   KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018,35(6):1547-1549. DOI:10.1093/molbev/msy096
doi: 10.1093/molbev/msy096
[24]   KIMURA M, CROW J F. The number of alleles that can be maintained in a finite population. Genetics, 1964,49(4):725-738.
[25]   OHTA T, KIMURA M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetical Research, 1973,22(2):201-204.
[26]   RIENZO A D, PETERSON A C, GARZA J C, et al. Mutational processes of simple-sequence repeat loci in human populations. PNAS, 1994,91(8):3166-3170.
[27]   PIRY S, ALAPETITE A, CORNUET J M, et al. GeneClass 2: a software for genetic assignment and first generation migrant detection. Journal of Heredity, 2004,95(6):536-539. DOI:10.1093/jhered/esh074
doi: 10.1093/jhered/esh074
[28]   HUBISZ M J, FALUSH D, STEPHENS M, et al. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 2009,9(5):1322-1332. DOI:10.1111/j.1755-0998.2009.02591.x
doi: 10.1111/j.1755-0998.2009.02591.x
[29]   JAKOBSSON M, ROSENBERG N A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007,23(14):1801-1806. DOI:10.1093/bioinformatics/btm233
doi: 10.1093/bioinformatics/btm233
[30]   ROSENBER N A. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 2003,4(1):137-138. DOI:10.1046/j.1471-8286.2003.00566.x
doi: 10.1046/j.1471-8286.2003.00566.x
[31]   PAETKAU D, SLADE R, BURDEN M, et al. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 2004,13(1):55-65. DOI:10.1046/j.1365-294X.2004.02008.x
doi: 10.1046/j.1365-294X.2004.02008.x
[32]   RANNALA B, MOUNTAI J L. Detecting immigration by using multilocus genotypes. PNAS, 1997,94(17):9197-9201. DOI:10.1073/pnas.94.17.9197
doi: 10.1073/pnas.94.17.9197
[33]   蔡磊,白俊杰,李胜杰,等.大口黑鲈北方亚种、佛罗里达亚种及其杂交子代的形态特征和遗传分析//中国水产学会学术年会论文摘要集.北京:中国水产学会,2011.
CAI L, BAI J J, LI S J, et al. Morphological and genetic analysis of northern largemouth bass, Florida largemouth bass and their reciprocal hybrids//Proceedings of the Annual Meeting of China Society of Fisheries. Beijing: China Society of Fisheries, 2011. (in Chinese with English abstract)
[34]   李胜杰,白俊杰,韩林强,等.大口黑鲈“优鲈3号”养殖实例.科学养鱼,2018,349(9):44-45.
LI S J, BAI J J, HAN L Q, et al. A case study of Micropterus salmoides ‘Excellent bass 3’. Scientific Fish Farming, 2018,349(9):44-45. (in Chinese)
[35]   AUSTIN J J, OLIVIER L C, NANKERVI D, et al. Twenty microsatellite loci for population and conservation genetic studies of the wedge-tailed eagle (Aquila audax). Australian Journal of Zoology, 2014,62(3):235-237. DOI:10.1071/ZO14030
doi: 10.1071/ZO1
[36]   LEE W C. Searching for disease susceptibility loci by testing for Hardy-Weinberg disequilibrium in a gene bank of affected individuals. American Journal of Epidemiology, 2003,158(5):397-400.
[1] Ya XIN,Xianping FANG,Shuzhen WANG,Jianxin TONG,Wenguo LAI,Jianrong WANG,Hong YU. Comparison of simple sequence repeat (SSR) and sequence related amplified polymorphism (SRAP) markers for genetic diversity analysis in strawberry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 278-287.
[2] CAO Lianfei, GU Peipei, LIN Yuqing. Genetic diversity of Apis cerana cerana based on mitochondrial DNA in Lishui, Zhejiang, China.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 425-430.
[3] Lu Lianming, Cheng Baoping, Du Danchao, Hu Xiurong, Pu Zhanxu, Chen Guoqing. Genetic diversity of Lecanicillium lecanii and its pathogenicity against Diaphorina citri[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 34-43.
[4] Zhou Jiaping, Yang Chunyuan, Wu Chun, Wang Rengang, Shi Yuewei, Xie Shengdong, Wang Zhihong, Xu Haiming, Ren Xueliang . Genetic diversity and development of core collection in tobacco (Nicotiana tabacum L.) resources[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 440-450.
[5] XU Lihua1, LI Wei2, WU chunlin1, DONG Zaijie3, WANG Chenghui1. Genetic differentiation of domesticated and wild common carps detected by three genetic analysis methods[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 393-399.
[6] GONG Ya‐ming, XU Sheng‐chun, MAO Wei‐hua, LI Ze‐yun. Transferable analysis of pea EST‐SSRs on faba bean and its application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(5): 479-484.
[7] XU Xiao-dong,CHEN Fei,NI Xi-yuan,ZHANG Xiao-wei,ZHAO Jian-yi. Analysis of relationships between molecular distances and heterosis of F1 performance in Brassica Napus L[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(6): 641-649.
[8] ZHOU Guo-Zhi, LI Zhi-Miao, YANG Yue-Jian, XING Juan, WANG Rong-Qing. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 390-394.
[9] . Phenotypic variation and relationships among sesame (Sesamum indicum L.) sub-core collections[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2004, 30(1): 10-16.