Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (5): 539-550    DOI: 10.3785/j.issn.1008-9209.2019.12.191
Biological sciences & biotechnology     
Recombinant expression and functional analysis of transgelin-like protein from the shell of Mytilus coruscus
Yuting JIANG(),Qi SUN,Huanzhi XU,Wang SHEN,Xiaolin ZHANG,Meihua FAN,Zhi LIAO()
Laboratory of Marine Biology Protein Engineering, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
Download: HTML   HTML (   PDF(4228KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Transgelin-like protein (TLP) is a novel shell matrix protein identified previously from the myostracum layer of Mytilus coruscus shell. For exploring its function in the shell formation of mussel, the TLP was recombinantly expressed by Escherichia coli expression system based on the sequence analysis and codon optimization. The functions of recombinant TLP (rTLP) on calcite- and aragonite-type calcium carbonate crystals were then investigated, including morphology, polymorph, crystallization rate, and binding ability of calcium carbonate crystals. Sequence analysis showed that the TLP contained a calponin homology (CH) domain, and the spatial structure of TLP predicted by SWISS-MODEL presented a conformation formed predominately by α-helices. Functional analyses showed that the rTLP had significant effects on the morphological change of aragonite-type calcium carbonate crystal and polymorph change of calcite-type calcium carbonate crystal, suggesting the function of this protein in the transformation of calcite to aragonite. In addition, the rTLP showed inhibition of calcite-type calcium carbonate crystallization rate in vitro, and promotion of aragonite-type calcium carbonate crystallization rate under high protein concentration. Moreover, the rTLP presented binding abilities to the calcite-type calcium carbonate crystal rather than the aragonite-type calcium carbonate crystal. Considering the myostracum layer is composed of aragonite-type calcium carbonate crystal, we speculate that the TLP may play important roles in the shell biomineralization and the formation of myostracum layer.



Key wordstransgelin-like protein      calponin homology domain      shell matrix protein      biomineralization     
Received: 19 December 2019      Published: 19 November 2020
CLC:  Q 67  
Corresponding Authors: Zhi LIAO     E-mail: 1315834132@qq.com;liaozhi@zjou.edu.cn
Cite this article:

Yuting JIANG,Qi SUN,Huanzhi XU,Wang SHEN,Xiaolin ZHANG,Meihua FAN,Zhi LIAO. Recombinant expression and functional analysis of transgelin-like protein from the shell of Mytilus coruscus. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 539-550.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.12.191     OR     http://www.zjujournals.com/agr/Y2020/V46/I5/539


厚壳贻贝转凝蛋白类贝壳基质蛋白的重组表达与功能分析

为探明从厚壳贻贝(Mytilus coruscus)贝壳肌棱柱层中鉴定的一种新型贝壳基质蛋白——转凝蛋白类蛋白(transgelin-like protein, TLP)在贝壳形成过程中可能的分子机制,在序列分析基础上,对厚壳贻贝TLP进行原核重组表达及其表达产物的纯化,并分析其对方解石型和文石型碳酸钙晶体形貌的诱导作用及对晶型的影响,同时,分析其对2种晶型碳酸钙晶体结晶速度的抑制及结合作用。序列分析结果显示,厚壳贻贝TLP含有一段钙调理蛋白同源(calponin homology, CH)结构域,其三级结构以α-螺旋结构域为主。功能分析结果表明,重组厚壳贻贝TLP能诱导方解石型和文石型碳酸钙晶体在形貌上产生变化,其中:对方解石型碳酸钙晶体的晶型具有向文石型转化的作用,但对文石型碳酸钙晶体的晶型无影响。重组TLP对方解石型碳酸钙晶体的结晶速度具有明显的抑制作用,而对文石型碳酸钙晶体的结晶速度在蛋白质量浓度较高时具有促进作用。此外,重组TLP具有结合方解石型碳酸钙晶体的作用,但与文石型碳酸钙晶体无明显结合。以上结果表明,TLP对贝壳的形成具有影响并可能在贝壳肌棱柱层的形成中起到了重要作用。


关键词: 转凝蛋白类蛋白,  钙调理蛋白同源结构域,  贝壳基质蛋白,  生物矿化 
Fig. 1 Sequence alignment of the cDNA and the amino acid sequence deduced from the open reading frame of M. coruscus TLPSingle asterisk (*) represents the termination codon; the tailing signal is underlined.
Fig. 2 Phylogenetic tree of M. coruscus TLP with 17 homologous protein sequences from other mollusks constructed by neighbor-joining methodThe maximum sequence difference was set as 0.85; single asterisk (*) represents the M. coruscus TLP.
Fig. 3 Comparison of domain distribution among M. coruscus TLP and homologous protein sequences from other mollusksⅠ. Homologous protein with only one CH domain; Ⅱ. Homologous protein with one CH and one calponin domain; Ⅲ. Homologous protein with one CH and five calponin domains in series; Ⅳ. Homologous protein with one CH and one GAS2 domain.
Fig. 4 Prediction of secondary and tertiary structures of M. coruscus TLPA. Secondary structure of TLP; B. Tertiary structure of TLP (Ⅰ-Ⅵ: α-helix).
Fig. 5 Analysis of codon adaptation index of M. coruscus TLP before and after optimizationA. Before optimization; B. After optimization.
Fig. 6 SDS-PAGE identification of M. coruscus TLP after recombinant expression and purificationM: Protein marker; 1: Recombinant expression product of TLP without induction of isopropyl-β-D-thiogalactoside (IPTG) (negative control); 2: Recombinant expression product of TLP with induction of IPTG for 4 h; 3: Supernatant of the cell lysate from the recombinant expression product of TLP with induction of IPTG; 4: Debris of the cell lysate from the recombinant expression product of TLP with induction of IPTG; 5: Penetrated sample from Ni-NTA column; 6: Eluted sample from Ni-NTA column with 30 mmol/L imidazole; 7: Eluted sample from Ni-NTA column with 200 mmol/L imidazole; 8: Eluted sample from Ni-NTA column with 300 mmol/L imidazole. The target protein band is denoted by an arrow.
Fig. 7 Purification of refolded recombinant TLP (rTLP) by high performance liquid chromatographyThe target protein band is denoted by an arrow.
Fig. 8 Scanning electron microscope (SEM) observation on in vitro crystallization of calcite-type calcium carbonate crystalA. Natural calcite-type calcium carbonate crystal (without protein induction); B. Calcite-type calcium carbonate crystal induced by 50 µg/mL bovine serum albumin (BSA); C. Calcite-type calcium carbonate crystal induced by 10 µg/mL rTLP; D. Calcite-type calcium carbonate crystal induced by 30 µg/mL rTLP; E-F. Calcite-type calcium carbonate crystal induced by 50 µg/mL rTLP. Scale bars: Figs. A, D, and E are 50 µm; Figs. B and C are 100 µm; Fig. F is 30 µm.
Fig. 9 SEM observation on in vitro crystallization of aragonite-type calcium carbonate crystalA. Natural aragonite-type calcium carbonate crystal (without protein induction); B. Aragonite-type calcium carbonate crystal induced by 50 µg/mL BSA; C. Aragonite-type calcium carbonate crystal induced by 10 μg/mL rTLP; D. Aragonite-type calcium carbonate crystal induced by 30 μg/mL rTLP; E-F: Aragonite-type calcium carbonate crystal induced by 50 μg/mL rTLP. Scale bars: Figs. A-E are 40 µm; Fig. F is 20 µm.
Fig. 10 Fourier transform infrared spectra of the calcite- and aragonite-type calcium carbonate crystalsA1-A2: Calcite-type calcium carbonate crystal without or with TLP, respectively, and the arrow represents the aragonite-type characteristic peak; B1-B2: Aragonite-type calcium carbonate crystal without or with TLP, respectively.
Fig. 11 In vitro inhibition of calcium carbonate crystallization by rTLPA. Calcite-type calcium carbonate crystal; B. Aragonite-type calcium carbonate crystal. n=3.
Fig. 12 SDS-PAGE analysis of rTLP precipitated by calcite- and aragonite-type calcium carbonate crystals1: Purified rTLP solution; 2: Supernatant of rTLP incubated with calcite-type calcium carbonate crystal for 2 h; 3: Supernatant of calcite-type calcium carbonate crystal after decalcification by 5% acetic acid; M: Protein marker; 4: Purified rTLP solution; 5: Supernatant of rTLP incubated with aragonite-type calcium carbonate crystal for 2 h; 6: Supernatant of aragonite-type calcium carbonate crystal after decalcification by 5% acetic acid.
[1]   SONG X R, LIU Z Q, WANG L L, et al. Recent advances of shell matrix proteins and cellular orchestration in marine molluscan shell biomineralization. Frontiers in Marine Science, 2019,6:41. DOI:10.3389/fmars.2019.00041
doi: 10.3389/fmars.2019.00041
[2]   TAYLOR J D, REID D G. Shell microstructure and mineralogy of the Littorinidae: ecological and evolutionary significance. Hydrobiologia, 1990,193(1):199-215.
[3]   OCHIAI E. Biomineralization: principles and applications in bioinorganic chemistry-Ⅴ. Journal of Chemical Education, 1991,68(8):627-637. DOI:10.1021/ed068p627
doi: 10.1021/ed068p627
[4]   KOCOT K M, AGUILERA F, MCDOUGALL C, et al. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Frontiers in Zoology, 2016,13(1):23-32. DOI:10.1186/s12983-016-0155-z
doi: 10.1186/s12983-016-0155-z
[5]   TALHAM D R. Biomineralization: principles and concepts in bioinorganic materials chemistry Stephen Mann. Crystal Growth & Design, 2002,2(6):675-676. DOI:10.1021/cg020033l
doi: 10.1021/cg020033l
[6]   CARIOLOU M A, MORSE D E. Purification and characterization of calcium-binding conchiolin shell peptides from the mollusc, Haliotis rufescens, as a function of development. Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology, 1988,157(6):717-729.
[7]   ADDADI L, WEINER S. Biomineralization: a pavement of pearl. Nature, 1997,389(6654):912-915.
[8]   ALVARES K. The role of acidic phosphoproteins in biomineralization. Connect Tissue Research, 2014,55(1):34-40. DOI:10.3109/03008207.2013.867336
doi: 10.3109/03008207.2013.867336
[9]   NORIZUKI M, SAMATA T. Distribution and function of the nacrein-related proteins inferred from structural analysis. Marine Biotechnology, 2008,10(3):234-241. DOI:10.1007/s10126-007-9061-x
doi: 10.1007/s10126-007-9061-x
[10]   赵鲁苹,徐焕志,陈东,等.厚壳贻贝贝壳的微结构及光谱分析. 浙江大学学报(理学版),2015,42(3):339-346. DOI:10.3785/j.issn.1008-9497.2015.03.018
ZHAO L P, XU H Z, CHEN D, et al. Microstructure and spectral analysis of Mytilus coruscus shell. Journal of Zhejiang University (Science Edition), 2015,42(3):339-346. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9497.2015.03.018
[11]   LIAO Z, BAO L F, FAN M H, et al. In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell. Journal of Proteomics, 2015,122:26-40. DOI:10.1016/j.jprot.2015.03.027
doi: 10.1016/j.jprot
[12]   GAO P, LIAO Z, WANG X X, et al. Layer-by-layer proteomic analysis of Mytilus galloprovincialis shell. PLoS ONE, 2015,10(7):e0133913. DOI:10.1371/journal.pone.0133913
doi: 10.1371/journal.pone.0133913
[13]   ZHANG G F, FANG X D, GUO X M, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012,490(7418):49-54. DOI:10.1038/nature11413
doi: 10.1038/nature11413
[14]   姜雨婷,孙琦,刘宏汉,等.翡翠贻贝外套膜转录组及贝壳珍珠质层和肌棱柱层蛋白质组分析. 中国生物化学与分子生物学报,2018,34(10):1080-1090. DOI:10.13865/j.cnki.cjbmb.2018.10.09
JIANG Y T, SUN Q, LIU H H, et al. The mantle transcriptome and shell proteome of nacre and myostracum from Perna viridis. Chinese Journal of Biochemistry and Molecular Biology, 2018,34(10):1080-1090. (in Chinese with English abstract)
doi: 10.13865/j.cnki.cjbmb.2018.10.09
[15]   DVORAKOVA M, NENUTIL R, BOUCHAL P. Trans-gelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Review of Proteomics, 2014,11(2):149-165. DOI:10.1586/14789450.2014.860358
doi: 10.1586/14789450.2014.860358
[16]   RIVERO F, CVRCKOVA F. Origins and evolution of the actin cytoskeleton. Advances in Experimental Medicine and Biology, 2007,607:97-110. DOI:10.1007/978-0-387-74021-8_8
doi: 10.1007/978-0-387-74021-8_8
[17]   PLAZYO O, LIU R, HOSSAIN M M, et al. Deletion of calponin 2 attenuates the development of calcific aortic valve disease in ApoE-/-mice. Journal of Molecular and Cellular Cardiology, 2018,121:233-241. DOI:10.1016/j.yjmcc.2018.07.249
doi: 10.1016/j.yjmcc
[18]   JIN J P, ZHANG Z, BAUTISTA J. Isoform diversity, regulation, and functional adaptation of troponin and calponin. Critical Reviews in Eukaryotic Gene Expression, 2008,18(2):93-124. DOI:10.1615/CritRevEukarGeneExpr.v18.i2.10
doi: 10.1615/CritRevEukarGeneExpr.v18.i2.10
[19]   LIU R, JIN J P. Calponin isoforms CNN1, CNN2 and CNN3: regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells. Gene, 2016,585(1):143-153. DOI:10.1016/j.gene.2016.02.040
doi: 10.1016/j.gene.2016.02.040
[20]   STRADAL T, KRANEWITTER W, WINDER S J, et al. CH domains revisited. FEBS Letters, 1998,431(2):134-137.
[21]   BASHOUR A M, FULLERTON A T, HART M J, et al. IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. Journal of Cell Biology, 1997,137(7):1555-1566.
[22]   BRILL S, LI S, LYMAN C W, et al. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Molecular and Cellular Biology, 1996,16(9):4869-4878.
[23]   HART M J, CALLOW M G, SOUZA B, et al. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. The EMBO Journal, 1996,15(12):2997-3005.
[24]   FUKATA M, KURODA S, FUJII K, et al. Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42. Journal of Biological Chemistry, 1997,272(47):29579-29583. DOI:10.1074/jbc.272.47.29579
doi: 10.1074/jbc.272.47.29579
[25]   孙琦,姜雨婷,申望,等.厚壳贻贝一种新型贝壳胶原蛋白的重组表达与功能分析. 中国生物化学与分子生物学报,2019,35(10):1108-1118. DOI:10.13865/j.cnki.cjbmb.2019.10.10
SUN Q, JIANG Y T, SHEN W, et al. Recombinant expression and functional analysis of a novel type of shell collagen from Mytilus coruscus. Chinese Journal of Biochemistry and Molecular Biology, 2019,35(10):1108-1118. (in Chinese with English abstract)
doi: 10.13865/j.cnki.cjbmb.2019.10.10
[26]   SHTUKENBERG A G, WARD M D, KAHR B, et al. Crystal growth with macromolecular additives. Chemical Reviews, 2017,117(24):14042-14090. DOI:10.1021/acs.chemrev.7b00285
doi: 10.1021/acs.chemrev
[27]   MATSUSHIRO A, MIYASHITA T, MIYAMOTO H, et al. Presence of protein complex is prerequisite for aragonite crystallization in the nacreous layer. Marine Biotechnology, 2003,5(1):37-44. DOI:10.1007/s10126-002-0048-3
doi: 10.1007/s10126-002-0048-3
[28]   BRAMHAM J, HODGKISON J L, SMITH B O, et al. Solution structure of the calponin CH domain and fitting to the 3D-helical reconstruction of F-actin: calponin. Structure, 2002,10(2):249-258. DOI:10.1016/S0969-2126(02)00703-7
doi: 10.1016/S0969-2126(02)00703-7
[29]   SHARP P M, LI W. The codon adaptation index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 1987,15(3):1281-1295.
[30]   ALBECK S, ADDADI L, WEINER S, et al. Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Connective Tissue Research, 1996,35(1/2/3/4):365-370. DOI:10.3109/03008209609029213
doi: 10.3109/03008209609029213
[31]   GAJJERAMAN S, NARAYANAN K, HAO J J, et al. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. Journal of Biological Chemistry, 2007,282(2):1193-1204. DOI:10.1074/jbc.M604732200
doi: 10.1074/jbc.M6047
[32]   CENKER C, BOMANS P H, FRIEDRICH H, et al. Peptide nanotube formation: a crystal growth process. Soft Matter, 2012,8(28):7463-7470. DOI:10.1039/c2sm25671a
doi: 10.1039/c2sm25671a
[33]   NAGASAWA H. Macromolecules in biominerals of aquatic organisms. Thalassas: An International Journal of Marine Sciences, 2004,20(1):15-24.
[34]   YANG L, MA X M, ZHANG X Y, et al. Cooperativity between bovine serum albumin (BSA) and crystal line of calcium carbonate in distilled water. Journal of the Chinese Chemical Society, 2002,49(1):45-50. DOI:10.1002/jccs.20020008
doi: 10.1002/jccs.2002
[35]   GOODMAN A, GOODE B L, MATSUDAIRA P, et al. The Saccharomyces cerevisiae calponin/transgelin homolog Scpl functions with fimbrin to regulate stability and organization of the actin cytoskeleton. Molecular Biology of the Cell, 2003,14(7):2617-2629. DOI:10.1091/mbc.E03-01-0028
doi: 10.1091/mbc.E03-01-0028
[36]   MARIE B, RAMOS-SILVA P, MARIN F, et al. Proteomics of CaCO3 biomineral-associated proteins: how to properly address their analysis. Proteomics, 2013,13(21):3109-3116. DOI:10.1002/pmic.201300162
doi: 10.1002/pmic.201300162
[37]   LIAO Z, JIANG Y T, SUN Q, et al. Microstructure and in-depth proteomic analysis of Perna viridis shell. PLoS ONE, 2019,14(7):e0219699. DOI:10.1371/journal.pone.0219699
doi: 10.1371/journal.pone.0219699
[38]   LIANG J, XU G R, XIE J, et al. Dual roles of the lysine-rich matrix protein (KRMP)-3 in shell formation of pearl oyster, Pinctada fucata. PLoS ONE, 2015,10(7):e0131868. DOI:10.1371/journal.pone.0131868
doi: 10.1371/journal.pone.0131868
[39]   MA Z J, HUANG J, SUN J, et al. A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata. Journal of Biological Chemistry, 2007,282(32):23253-23263. DOI:10.1074/jbc.M700001200
doi: 10.1074/jbc.M700001200
[40]   MARIE B, ZANELLACLEON I, CORNEILLAT M, et al. Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS Journal, 2011,278(12):2117-2130. DOI:10.1111/j.1742-4658.2011.08129.x
doi: 10.1111/j.1742-4658.2011.08129.x
[41]   YAN Z G, JING G, GONG N P, et al. N40, a novel nonacidic matrix protein from pearl oyster nacre, facilitates nucleation of aragonite in vitro. Biomacromolecules, 2007,8(11):3597-3601. DOI:10.1021/bm0701494
doi: 10.1021/bm0701494
[42]   YAN Y, YANG D, YANG X, et al. A novel matrix protein, PfY2, functions as a crucial macromolecule during shell formation. Scientific Reports, 2017,7(1):6021. DOI:10.1038/s41598-017-06375-w
doi: 10.1038/s41598-017-06375-w
[43]   TRECCANI L, MANN K, HEINEMANN F, et al. Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophysical Journal, 2006,91(7):2601-2608. DOI:10.1529/biophysj.106.086108
doi: 10.1529/biophysj.106.086108
[44]   KONO M, HAYASHI N, SAMATA T. Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochemical and Biophysics Research Communication, 2000,269(1):213-218. DOI:10.1006/bbrc.2000.2274
doi: 10.1006/bbrc.2000.2274
[45]   LEESMILLER J P, HEELEY D H, SMILLIE L B, et al. Isolation and characterization of an abundant and novel 22-kDa protein (SM22) from chicken gizzard smooth muscle. Journal of Biological Chemistry, 1987,262(7):2988-2993.
[1] Bao Linfei, Wang Xinxing, He Jianyu, Fan Meihua, Gao Peng, Liao Zhi. Illumina-based transcriptome sequencing of mussel Mytilus coruscus mantle[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 394-406.