Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 557-569    DOI: 10.3785/j.issn.1008-973X.2024.03.013
土木工程、交通工程     
盾构隧道近接斜交侧穿桥梁桩基变形计算方法
王超1(),朱春洲2,邹金锋1,*(),刘波2,张晗秋3,马江锋2
1. 中南大学 土木工程学院,湖南 长沙 410075
2. 中铁上海设计院集团有限公司 南昌院,江西 南昌 330000
3. 南昌轨道交通集团有限公司 地铁项目管理分公司,江西 南昌 330038
Calculation approach for deformation of adjacent pile foundation caused by diagonal intersection with side penetration construction of shield tunnel
Chao WANG1(),Chunzhou ZHU2,Jinfeng ZOU1,*(),Bo LIU2,Hanqiu ZHANG3,Jiangfeng MA2
1. School of Civil Engineering, Central South University, Changsha 410075, China
2. Institute of Nanchang, China Railway Shanghai Design Institute Group Co. Ltd, Nanchang 330000, China
3. Metro Project Management Branch, Nanchang Urban Rail Group Co. Ltd, Nanchang 330038, China
 全文: PDF(2880 KB)   HTML
摘要:

以圆形截面桩为例,基于修正后的Loganathan公式,利用文克尔弹性地基梁模型、m法计算理论和荷载传递法,建立盾构隧道近接斜交侧穿既有桥梁桩基的变形计算方法. 通过现场监测结果验证计算方法的工程适用性,并利用该方法分析侧穿桥梁桩基施工引起桩身水平挠曲变形的主要影响因素. 结果表明:桩身水平位移和桩顶竖向位移的理论计算结果与监测结果之间的最大误差分别不超过14.6%和2.7%. 与现有方法相比,所提方法的计算结果更接近实测值. 入土段桩身水平挠曲程度与隧道轴心和桩基中心轴线之间的水平距离、隧道侧穿斜交角呈负相关;最大水平挠曲位移与隧道侧穿斜交角呈负相关. 当水平侧穿距离为6.0 m时,最大水平挠曲变形为7.4 mm;当隧道盾构侧穿斜交角为70.0°时,入土段桩身最大水平挠曲位移为15.4 mm.

关键词: 盾构隧道斜交侧穿邻近桥梁桩基变形规律桩身水平挠曲变形    
Abstract:

The calculation approach for the deformation of existing bridge pile foundation caused by diagonal intersection with side penetration construction of the shield tunnel was established. The approach was established based on the modified Loganathan formula, the Winkel elastic foundation beam model, the m-method calculation theory and the load transfer method, taking the circular section pile as an example. The engineering applicability of the calculation approach was verified through field monitoring results, and the method was used to analyze the main influencing factors of horizontal deflection deformation of piles caused by the diagonal intersection with side penetration construction of shield tunnel. Results showed that the maximum error between the theoretical results and the monitoring results for the horizontal displacement of the pile body and the vertical displacement of the pile top were less than 14.6% and 2.7%, respectively. The calculation results of the proposed method were closer to the measured values, compared with that of the existing methods. The horizontal deflection of the pile body in the entry section was negatively correlated with the horizontal distance between the tunnel axis and the center axis of the pile foundation, and the oblique angle of the tunnel side penetration. The maximum horizontal deflection displacement was also negatively related to the tunnel side penetration angle. The maximum horizontal deflection was 7.4 mm at the horizontal side penetration distance of 6.0 m, while the maximum horizontal deflection displacement was 15.4 mm at the tunnel shield side penetration angle of 70.0°.

Key words: shield tunnel    diagonal intersection with side penetration    adjacent bridge pile foundation    deformation law    horizontal deflection deformation of pile
收稿日期: 2023-04-19 出版日期: 2024-03-05
CLC:  TU 473  
基金资助: 南昌轨道交通集团2020年度科研计划资助项目(2020HGKYB002).
通讯作者: 邹金锋     E-mail: wangchao214801069@yeah.net;zoujinfeng_csu@163.com
作者简介: 王超(1994—),男,博士生,从事岩土与地下工程稳定性分析方法与加固关键技术研究. orcid.org/0009-0005-7182-9291. E-mail:wangchao214801069@yeah.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王超
朱春洲
邹金锋
刘波
张晗秋
马江锋

引用本文:

王超,朱春洲,邹金锋,刘波,张晗秋,马江锋. 盾构隧道近接斜交侧穿桥梁桩基变形计算方法[J]. 浙江大学学报(工学版), 2024, 58(3): 557-569.

Chao WANG,Chunzhou ZHU,Jinfeng ZOU,Bo LIU,Hanqiu ZHANG,Jiangfeng MA. Calculation approach for deformation of adjacent pile foundation caused by diagonal intersection with side penetration construction of shield tunnel. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 557-569.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.013        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/557

图 1  桥梁桩基的文克尔弹性地基梁模型示意图
图 2  盾构隧道近接斜交侧穿桥梁桩基施工布置示意图
图 3  隧道盾构斜交侧穿时桥梁桩基的桩-土相互作用模型
图 4  桩身分段差分计算模型
图 5  桥梁桩身竖向荷载传递的力学模型
图 6  土体卸荷回弹状态下隧道拱顶剪应力计算模型
图 7  盾构隧道近接侧穿既有铁路桥梁桩基施工现场
岩土层名称Γ / mγ / (kN?m?3)cs / kPaφ / (°)Es / MPaν
杂填土1.817.85.516.5
粉质黏土5.417.625.224.48.50.35
粗砂3.220.2022.312.60.29
砾砂14.222.5023.616.30.25
强风化泥质粉砂岩2.623.210.220.222.50.21
中风化泥质粉砂岩20.823.613.621.825.30.18
表 1  土体物理力学参数取值情况统计表
图 8  既有铁路桥梁桩基与盾构隧道位置关系示意图
图 9  未入土段铁路桥梁桩基变形监测点布置示意图
图 10  未入土段桩基位移结果对比图
图 11  不同方法所得入土段桩身水平位移结果对比图
图 12  隧道轴心与桩基中心轴线水平距离影响下的桩身水平挠曲变形曲线
图 13  盾构侧穿斜交角影响下的桩身水平挠曲变形曲线
1 王金华, 徐长节, 王玉林, 等 盾构近距离侧穿桥梁及下穿公路变形规律与控制技术研究[J]. 公路, 2023, 68 (1): 400- 406
WANG Jinhua, XU Changjie, WANG Yulin, et al Research on deformation law and control technology of shield close side crossing bridge and underpassing highway[J]. Highway, 2023, 68 (1): 400- 406
2 周鑫, 杨建辉, 刘涛 盾构法施工对近距离侧穿桥梁桩基的影响分析[J]. 地下空间与工程学报, 2022, 18 (2): 586- 595
ZHOU Xin, YANG Jianhui, LIU Tao Analysis on the influence of shield construction on lateral and closely cross bridge pile foundation[J]. Chinese Journal of Underground Space and Engineering, 2022, 18 (2): 586- 595
3 WANG J, WEN Z F Analysis of construction impact of a large diameter shield tunneling side-crossing viaduct pile foundations in short distance[J]. Geotechnical and Geological Engineering, 2021, 39 (8): 5587- 5598
doi: 10.1007/s10706-021-01846-4
4 黄戡, 孙逸玮, 杨伟军, 等 基于渗流应力耦合的盾构隧道开挖对邻近桥梁桩基的影响[J]. 中南大学学报:自然科学版, 2021, 52 (3): 983- 993
HUANG Kan, SUN Yiwei, YANG Weijun, et al Influence of shield tunneling on pile foundation of adjacent bridge using fluid-soil coupling theory[J]. Journal of Central South University: Science and Technology, 2021, 52 (3): 983- 993
5 冯国辉, 窦炳珺, 张高锋, 等 隧道开挖引起水平向位移被动桩的简化计算方法[J]. 土木与环境工程学报:中英文, 2021, 43 (2): 10- 18
FENG Guohui, DOU Bingjun, ZHANG Gaofeng, et al Simplified calculation method for lateral displacement of passive pile caused by tunneling[J]. Journal of Civil and Environmental Engineering, 2021, 43 (2): 10- 18
6 程康, 徐日庆, 林存刚, 等 既有单桩在邻近基坑开挖下的水平向响应简化分析[J]. 浙江大学学报:工学版, 2020, 54 (1): 91- 101
CHENG Kang, XU Riqing, LIN Cungang, et al Simplified analysis method for evaluating horizontal deformation of single pile due to adjacent foundation pit excavation[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (1): 91- 101
7 熊巨华, 王远, 刘侃, 等 隧道开挖对邻近单桩竖向受力特性影响[J]. 岩土力学, 2013, 34 (2): 475- 482
XIONG Juhua, WANG Yuan, LIU Kan, et al Effects of tunneling on vertical bearing behaviors of adjacent single pile[J]. Rock and Soil Mechanics, 2013, 34 (2): 475- 482
doi: 10.16285/j.rsm.2013.02.033
8 毛坚强, 徐骏, 杨磊 滑体段采用m法模型的抗滑桩计算方法[J]. 岩土力学, 2018, 39 (4): 1197- 1202
MAO Jianqiang, XU Jun, YANG Lei An improved method for stabilising pile by using m-method model to the whole pile[J]. Rock and Soil Mechanics, 2018, 39 (4): 1197- 1202
9 杨美良, 罗婉庆, 张建仁 考虑剪切变形影响的桩基m法计算理论[J]. 土木与环境工程学报:中英文, 2016, 38 (6): 54- 61
YANG Meiliang, LUO Wanqing, ZHANG Jianren Calculating theory of m method assumption for piles with shear deformation effect[J]. Journal of Civil and Environmental Engineering, 2016, 38 (6): 54- 61
10 LOGANATHAN N, POULOS H G Analytical prediction for tunneling-induced ground movement in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (9): 846- 856
doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
11 张继超, 曾垂刚, 崔乐健, 等 基于Loganathan & Poulos、Clough修正公式的浅埋超大直径盾构隧道地面沉降预测[J]. 隧道建设:中英文, 2022, 42 (Suppl.1): 274- 280
ZHANG Jichao, ZENG Chuigang, CUI Lejian, et al Ground settlement prediction of shallow-buried super-large-diameter shield tunnel based on Loganathan and Poulos and Clough modified formulas[J]. Tunnel Construction, 2022, 42 (Suppl.1): 274- 280
12 张治国, 姜蕴娟, 徐晨, 等 对“考虑桩侧土体三维效应和地基剪切变形的隧道开挖对邻近桩基影响分析”讨论的答复[J]. 岩土工程学报, 2018, 40 (7): 1360- 1362
ZHANG Zhiguo, JIANG Yunjuan, XU Chen, et al Reply to discussion on “influence of tunneling on deflection of adjacent piles considering shearing deformation of foundation and 3D effects of lateral soils beside piles”[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (7): 1360- 1362
doi: 10.11779/CJGE201807026
13 MORFIDIS K. Research and development of methods for the modeling of foundation structural elements and soil [D]. Thessaloniki: Aristotle University of Thessaloniki, 2003: 45-72.
14 RANDOLPH M F, WROTH C P Analysis of deformation of vertically load piles[J]. Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, 1978, 104 (12): 1465- 1488
15 赵明华, 邹丹, 邹新军 基于荷载传递法的高承台桩基沉降计算方法研究[J]. 岩石力学与工程学报, 2005, 24 (13): 2310- 2314
ZHAO Minghua, ZOU Dan, ZOU Xinjun Settlement calculation of pile foundations with elevated caps by load transfer method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (13): 2310- 2314
16 高子坤, 施建勇 岩土抗拉模量值修正与桩土作用理论解答研究[J]. 力学学报, 2013, 45 (5): 739- 745
GAO Zikun, SHI Jianyong Research of constitutive relation correction of geotechnical materials and theoretical solution due to pile-soil interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45 (5): 739- 745
17 ZHANG Z G, HUANG M S, XU C, et al Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation model[J]. Tunnelling and Underground Space Technology, 2018, 78 (8): 146- 158
18 冯国辉, 郑茗旺, 窦炳珺, 等 盾构掘进引起的邻近群桩水平位移解析研究[J]. 中南大学学报: 自然科学版, 2022, 53 (4): 1371- 1380
FENG Guohui, ZHENG Mingwang, DOU Bingjun, et al Analytical study of horizontal displacement of adjacent pile group caused by shield tunneling[J]. Journal of Central South University: Science and Technology, 2022, 53 (4): 1371- 1380
[1] 李瀚源,李兴高,刘杨,杨益,马明哲. 跨活动断层盾构隧道纵向受力及变形特征[J]. 浙江大学学报(工学版), 2023, 57(2): 340-352.
[2] 周浙件,范毅雄,方燃,边学成. 地基沉降引发输水盾构隧道复合结构受弯分析[J]. 浙江大学学报(工学版), 2023, 57(12): 2476-2488.
[3] 李瀚源,李兴高,马明哲,刘浩,杨益. 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报(工学版), 2022, 56(4): 631-639.
[4] 崔允亮,李志远,魏纲,陈江,周联英. 上跨拟建隧道的地下综合管廊预保护效果[J]. 浙江大学学报(工学版), 2021, 55(2): 330-337.
[5] 张子新,张家奇,黄昕,庄欠伟. 盾构隧道密封垫长期防水性能预测的试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 118-125.
[6] 杨春山, 魏立新, 莫海鸿, 何则干. 考虑衬砌变形与接头特征的盾构隧道纵向刚度[J]. 浙江大学学报(工学版), 2018, 52(2): 358-366.
[7] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(7): 1268-1275.
[8] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(4): 2-3.
[9] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074.
[10] 刘维, 张翔杰, 唐晓武, 朱季, 陈仁朋. 饱和沙土中土压盾构开挖面极限支护力[J]. J4, 2012, 46(4): 665-671.