Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (12): 2375-2380    DOI: 10.3785/j.issn.1008-973X.2023.12.004
机械工程、能源工程     
单向高频正弦流量信号标定系统的建模与试验
丁川1(),朱海鑫1,朱宽宽1,夏宁1,刘丽2,3,阮健1,*()
1. 浙江工业大学 机械工程学院,浙江 杭州 310014
2. 浙大城市学院 机械电子工程研究所,浙江 杭州 310015
3. 浙江大学 流体传动及控制国家重点实验室,浙江 杭州 310030
Modeling and testing of unidirectional high-frequency sinusoidal flow signal calibration system
Chuan DING1(),Hai-xin ZHU1,Kuan-kuan ZHU1,Ning XIA1,Li LIU2,3,Jian RUAN1,*()
1. School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. Institute of Mechatronics Engineering, Hangzhou City University, Hangzhou 310015, China
3. State Key Laboratory of Fluid Drive and Control, Zhejiang University, Hangzhou 310030, China
 全文: PDF(1101 KB)   HTML
摘要:

为了标定单向动态流量信号,提出单向高频流量信号标定系统. 该系统用动态缸活塞运动速度记录流量的动态变化,用流量计记录流量的稳态值. 建立系统的数学模型和AMESim仿真模型,评估所提系统的动态标定性能. 仿真结果显示,在输入正弦流量信号和阶跃流量信号后,标定系统经调整后会达到稳定状态,即动态缸活塞处于设定的行程中位。在输入50 Hz的正弦流量信号后系统仍未出现幅值衰减,具有良好的标定能力. 搭建试验台,输入单向高频正弦流量信号进行标定系统试验,使用标定流量理论公式计算系统的输出值. 试验结果证明,当输入变频率为5~30 Hz的正弦流量信号时,标定系统的输出值没有幅值衰减和相位滞后. 系统的表现与仿真结论一致,具有标定单向高频流量信号的可行性.

关键词: 单向高频流量标定系统AMESim仿真流量标定试验闭环控制    
Abstract:

In order to calibrate the unidirectional dynamic flow signal, a unidirectional high-frequency flow signal calibration system was proposed to record the dynamic change of the flow rate with the dynamic cylinder piston movement speed and to record the steady state value of the flow rate with the flow meter. A mathematical model of the system and an AMESim simulation model were built to evaluate the dynamic calibration performance of the proposed system. The simulation results show that after input of the sinusoidal flow signal and step flow signal, the calibration system will reach a stable state after adjustment, that is, the dynamic cylinder piston is in the set stroke position. After the input of a 50 Hz sinusoidal flow signal, the system still does not appear amplitude attenuation, which has good calibration ability. A test bench was set up to input the unidirectional high-frequency sinusoidal flow signal for a calibration test, and the output value of the system was calculated using the theoretical formula for calibration flow. The test results prove that there is no amplitude decay and phase lag in the output value of the calibration system when the sinusoidal flow signal with an input frequency range of 5-30 Hz is input. The performance of the system is consistent with the simulation conclusions and has the feasibility of calibrating unidirectional high-frequency flow signals.

Key words: unidirectional high-frequency flow    calibration system    AMESim simulation    flow calibration test    closed-loop control
收稿日期: 2023-02-09 出版日期: 2023-12-27
CLC:  TH 39  
基金资助: 国家自然科学基金资助项目(52205072, 51805480);浙江省自然科学基金资助项目(LY21E050013)
通讯作者: 阮健     E-mail: chuanding@zjut.edu.cn;ruanjiane@zjut.edu.cn
作者简介: 丁川(1986—),男,副教授,从事高性能液压元件和高速、超高压液压系统研究. orcid.org/0000-0002-1034-2261.E-mail: chuanding@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
丁川
朱海鑫
朱宽宽
夏宁
刘丽
阮健

引用本文:

丁川,朱海鑫,朱宽宽,夏宁,刘丽,阮健. 单向高频正弦流量信号标定系统的建模与试验[J]. 浙江大学学报(工学版), 2023, 57(12): 2375-2380.

Chuan DING,Hai-xin ZHU,Kuan-kuan ZHU,Ning XIA,Li LIU,Jian RUAN. Modeling and testing of unidirectional high-frequency sinusoidal flow signal calibration system. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2375-2380.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.004        https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2375

图 1  单向高频正弦流量信号标定系统原理图
图 2  单向高频正弦流量信号标定系统仿真模型
参数 数值
直动减压阀阀芯直径/mm 16
直动减压阀阀芯质量/g 65
直动减压阀弹簧刚度/(N·mm?1) 3
位置反馈阀阀芯直径/mm 12
位置反馈阀阀芯质量/g 48
动态缸无杆腔活塞直径/mm
动态缸有杆腔活塞直径/mm
动态缸活塞质量/kg
127.0
89.8
3
平均流量阀阀芯直径/mm 12
平均流量阀阀芯质量/g 40
平均流量阀弹簧刚度/(N·mm?1) 2
表 1  仿真系统的关键参数
图 3  阶跃流量输入信号的系统响应图
图 4  单向正弦流量输入信号的活塞运动与系统标定图
图 5  标定系统在不同频率正弦流量输入的仿真情况
图 6  单向高频正弦流量信号标定系统试验台
图 7  标定系统在不同频率正弦流量输入的试验情况
1 朱宇辉, 丁川, 阮健 容积式流量计的研究现状及展望[J]. 液压与气动, 2019, (4): 1- 14
ZHU Yu-hui, DING Chuan, RUAN Jian Research review and prospect of positive displacement flowmeter[J]. Chinese Hydraulics and Pneumatics, 2019, (4): 1- 14
2 YANG J, JIAO H N. Design of multi-channel ultrasonic flowmeter based on ARM [C]// 2010 International Conference on Electrical and Control Engineering. Wuhan: 2010: 758-761.
3 YUAN Y, ZHANG T H Research on the dynamic characteristics of a turbine flow meter[J]. Flow Measurement and Instrumentation, 2017, 55: 59- 66
doi: 10.1016/j.flowmeasinst.2017.05.002
4 王筱庐, 陈玉春, 蒋宇翔 基于层流流量计的航发燃油流量动态测量技术研究[J]. 仪器仪表学报, 2021, 42 (3): 35- 41
WANG Xiao-lu, CHEN Yu-chun, JIANG Yu-xiang Research on fule dynamic flow measurement technology for aero-engine flow based on laminar flow meter[J]. Chinese Journal of Scientific Instrument, 2021, 42 (3): 35- 41
5 DING C, ZHU Y H, LIU L, et al Research on a novel flowmeter with parallel two-dimensional pistons as its metering units[J]. IEEE Access, 2019, 7: 110912- 110927
doi: 10.1109/ACCESS.2019.2933662
6 王世富 伺服阀测试用动态缸的特性研究[J]. 晋中学院学报, 2008, 25 (3): 10- 14+85
WANG Shi-fu Research on the characteristics of a dynamic cylinder used in hydraulic servo vale test[J]. Journal of Jinzhong University, 2008, 25 (3): 10- 14+85
doi: 10.3969/j.issn.1673-1808.2008.03.003
7 胡恒勇. 齿轮流量计理论及其动态性能实验研究[D]. 淮南: 安徽理工大学, 2017.
HU Heng-yong. The theory of gear flow meter and its dynamic performance Experiment research [D]. Huainan: Anhui University of Science and Technology, 2017.
8 吉鑫浩, 汪成文, 陈帅, 等 阀控电液位置伺服系统滑模反步控制方法[J]. 中南大学学报: 自然科学版, 2020, 51 (6): 1518- 1525
JI Xin-hao, WANG Cheng-wen, CHEN Shuai, et al Sliding mode back-stepping control method for valve-controlled electro-hydraulic position servo system[J]. Journal of Central South University: Science and Technology, 2020, 51 (6): 1518- 1525
9 王慧, 侯冬冬 电液伺服系统位置跟踪平整度控制策略研究[J]. 液压与气动, 2019, (7): 107- 113
WANG Hui, HOU Dong-dong Research on flatness based controller for position tracking control of electrohydraulic servo system[J]. Chinese Hydraulics and Pneumatics, 2019, (7): 107- 113
doi: 10.11832/j.issn.1000-4858.2019.07.018
10 傅周东, 路甬祥 耐高压动态流量计的研究[J]. 液压与气动, 1986, (2): 2- 9
FU Zhou-dong, LU Yong-xiang Research on high pressure resistance dynamic flowmeter[J]. Chinese Hydraulics and Pneumatics, 1986, (2): 2- 9
11 陈钢, 傅周东, 吴根茂, 等 动态流量计及其智能优化[J]. 中国机械工程, 1994, 5 (3): 34- 37
CHEN Gang, FU Zhou-dong, WU Gen-mao, et al Dynamic flowmeter and its intelligent optimization[J]. China Mechanical Engineering, 1994, 5 (3): 34- 37
12 黎启柏, 银兵 智能化差压式双向流量计的研究[J]. 液压与气动, 1997, (1): 19- 22
LI Qi-bai, YIN Bing A study on intelligent differential pressure type double flow-meter[J]. Chinese Hydraulics and Pneumatics, 1997, (1): 19- 22
13 BEAULIEU A, FOUCAULT E, BRAUD P, et al A flowmeter for unsteady liquid flow measurements[J]. Flow Measurement and Instrumentation, 2011, 22 (2): 131- 137
doi: 10.1016/j.flowmeasinst.2011.01.001
14 阮健, 李进园, 金丁灿, 等 二维(2D)活塞泵原理性验证研究[J]. 浙江工业大学学报, 2017, 45 (3): 264- 269
RUAN Jian, LI Jin-yuan, JIN Ding-chan, et al Research and feasibility verification of two-dimensional (2D) piston pump[J]. Journal of Zhejiang University of Technology, 2017, 45 (3): 264- 269
15 孟彬, 杨冠政, 徐豪, 等 插装式2D电液比例流量阀的特性研究[J]. 机械工程学报, 2022, 58 (20): 421- 437
MENG Bin, YANG Guan-zheng, XU Hao, et al Study on characteristics of 2D cartridge electro-hydraulic proportional flow rate valve[J]. Journal of Mechanical Engineering, 2022, 58 (20): 421- 437
doi: 10.3901/JME.2022.20.421
16 丁川, 陈豪奇, 王熙, 等 二维活塞式动态流量计研究[J]. 农业机械学报, 2022, 53 (4): 450- 458
DING Chuan, CHEN Hao-qi, WANG Xi, et al Investigation on two-dimensional piston dynamic flowmeter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (4): 450- 458
doi: 10.6041/j.issn.1000-1298.2022.04.047
17 CHEESEWRIGHT R, CLARK C, BELHADJ A, et al The dynamic response of Coriolis mass flow meters[J]. Journal of Fluids and Structures, 2003, 18 (2): 165- 178
doi: 10.1016/j.jfluidstructs.2003.06.001
18 CHEESEWRIGHT R, CLARK C, HOU Y Y The response of Coriolis flowmeters to pulsating flows[J]. Flow Measurement and Instrumentation, 2004, 15 (2): 59- 67
doi: 10.1016/j.flowmeasinst.2003.12.008
19 刘涛, 宋涛, 姚辉 泵-缸复合结构新型动态流量计[J]. 中国机械工程, 2016, 27 (15): 2060- 2063+2068
LIU Tao, SONG Tao, YAO Hui Pump-cylinder composite structure new dynamic flowmeter[J]. China Mechanical Engineering, 2016, 27 (15): 2060- 2063+2068
20 李争彪. 复合型流量计的理论及实验研究[D]. 秦皇岛: 燕山大学, 2021.
LI Zheng-biao. Theoretical and experimental research on compound flowmeter [D]. Qinhuangdao: Yanshan University, 2021.
21 左志兵. 双压差动态流量计的模型研究[D]. 秦皇岛: 燕山大学, 2019.
ZUO Zhi-bing. Model research on double differential pressure dynamic flowmeter [D]. Qinhuangdao: Yanshan University, 2019.
22 龚杰. 液体微小流量装置的设计与研究[D]. 镇江: 江苏大学, 2018.
GONG Jie. Design and research of liquid micro flow device [D]. Zhenjiang: Jiangsu University, 2018.
23 许益民 电液伺服阀频率特性测试系统误差分析[J]. 武汉科技大学学报: 自然科学版, 2005, 28 (4): 346- 348
XU Yi-min Error analysis for frequency characteristics test system of electro-hydraulic servo valve[J]. Journal of Wuhan University of Science and Technology: Natural Science Edition, 2005, 28 (4): 346- 348
[1] 叶梦佳,王宇轩,王赟,赖周年,曹琳琳,吴大转. AUV平面直线航迹跟踪控制算法[J]. 浙江大学学报(工学版), 2022, 56(11): 2127-2134.
[2] 吕振,王新杰,刘亚风,赵勇筌. 光电-静电复合驱动器的驱动性能[J]. 浙江大学学报(工学版), 2022, 56(1): 178-185.
[3] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[4] 范双双, 杨灿军, 彭时林, 黎开虎, 谢钰, 张绍勇. 水下滑翔机关键承压系统设计与试验研究[J]. J4, 2014, 48(4): 633-640.
[5] 张国月,曲轶龙,齐冬莲,李冉. 基于重复控制的三电平光伏逆变技术[J]. J4, 2012, 46(7): 1339-1344.
[6] 苏瑜, 周文华, 竺春狄. 电控柴油机ECU通用性标定平台的研究与开发[J]. J4, 2010, 44(8): 1530-1534.
[7] 邢彤, 杨华勇, 龚国芳. 盾构刀盘驱动液压系统效率对比研究[J]. J4, 2010, 44(2): 358-363+372.
[8] 杨华勇, 邢彤, 龚国芳. 变转速泵控模拟盾构刀盘驱动系统研究[J]. J4, 2010, 44(2): 373-378.
[9] 邢彤 杨华勇 龚国芳. 盾构机液压系统多泵优化组合驱动技术[J]. J4, 2009, 43(3): 511-516.